In this work, a fast(0.5 h), green microwave-assisted synthesis of single crystalline Sb_2Se_3 nanowires was developed. For the first time we demonstrated a facile solvent-mediated process, whereby intriguing nanostru...In this work, a fast(0.5 h), green microwave-assisted synthesis of single crystalline Sb_2Se_3 nanowires was developed. For the first time we demonstrated a facile solvent-mediated process, whereby intriguing nanostructures including antimony selenide(Sb_2Se_3) nanowires and selenium(Se) microrods can be achieved by merely varying the volume ratio of ethylene glycol(EG) and H_2O free from expensive chemical and additional surfactant. The achieved uniform Sb_2Se_3 nanowire is single crystalline along [001]growth direction with a diameter of 100 nm and a length up to tens of micrometers. When evaluated as an anode of lithium-ion battery, Sb_2Se_3 nanowire can deliver a high reversible capacity of 650.2 m Ah g^(-1) at 100 mA g^(-1) and a capacity retention of 63.8% after long-term 1000 cycles at 1000 mA g^(-1), as well as superior rate capability(389.5 m Ah g^(-1) at 2000 mA g^(-1)). This easy solvent-mediated microwave synthesis approach exhibits its great universe and importance towards the fabrication of high-performance metal chalcogenide electrode materials for future low-cost, large-scale energy storage systems.展开更多
The development of high-performance aqueous batteries calls for an in-depth knowledge of their chargedischarge redox and failure mechanism,as well as a systematic understanding of the dynamic evolution of microstructu...The development of high-performance aqueous batteries calls for an in-depth knowledge of their chargedischarge redox and failure mechanism,as well as a systematic understanding of the dynamic evolution of microstructure,phase composition,chemical composition,and local chemical environment of the materials for battery.In-situ characterization technology is expected to understand and reveal the problems faced by aqueous rechargeable batteries,such as the dissolution of electrode materials,the growth of metal negative electrode dendrites,passivation,corrosion,side reactions and a series of problems.Based on this,typical in-situ characterization techniques and their basic mechanisms are summarized,including in-situ optical visualization,in-situ microscopy techniques(in-situ scanning electron microscopy(SEM),in-situ transmission electron microscopy(TEM)),in-situ X-ray techniques(in-situ X-ray diffraction(XRD),in-situ X-ray photoelectron spectroscopy(XPS),in-situ near-edge structural X-ray absorption spectroscopy(XANES)),and in-situ spectroscopy techniques(in-situ Raman spectroscopy,in-situ Fourier transform infrared(FTIR)).Moreover,some emerging techniques concerning aqueous battery research,especially gas evolution and materials dissolution issues,such as in-situ electrochemical quartz crystal microbalance(EQCM).in-situ fiber-optic sensing,in-situ gas chromatography(GC) are introduced.At last,the applications of advanced in-situ characterizations in future research of aqueous batteries are emphasized and discussed,along with some of the remaining challenges and possible solutions.展开更多
K-ion battery (KIB) is a new-type energy storage device that possesses potential advantages of low-cost and abundant resource of potassium.To develop advanced electrode materials for accommodating the large size and h...K-ion battery (KIB) is a new-type energy storage device that possesses potential advantages of low-cost and abundant resource of potassium.To develop advanced electrode materials for accommodating the large size and high activity of potassium ion is of great interests.Herein,a segment-like antimony (Sb) nanorod encapsulated in hollow carbon tube electrode material (Sb@HCT) was prepared.Beneficial from the virtue of abundant nitrogen doping in carbon tube,one-dimensional and hollow structure advantages,Sb@HCT exhibits excellent potassium storage properties:in the case of potassium bis(fluorosulfonyl)imide (KFSI) electrolyte,Sb@HCT displays a reversible capacity of up to 453.4 mAh·g^-1 at a current density of 0.5 A·g^-1 and good rate performance (a capacity of 211.5 mAh·g^-1 could be achieved at an ultrahigh rate of 5 A·g^-1).Additionally,Sb@HCT demonstrates excellent long-cycle stability at a current density of 2 A·g^-1 over 120 cycles.Meanwhile,electrolyte optimization is an effective strategy for greatly improving electrochemical performance.Through ex-situ characterizations,we disclosed the potassiation of Sb anode is quite reversible and undergoes multistep processes,combining solid solution reaction and two-phase reaction.展开更多
Owing to adjustable microstructure and stable physiochemical properties,carbon-based materials are regarded as promising materials as anodes for potassium-ion batteries(PlBs).Building amorphous structure and introduci...Owing to adjustable microstructure and stable physiochemical properties,carbon-based materials are regarded as promising materials as anodes for potassium-ion batteries(PlBs).Building amorphous structure and introducing defects are favorable methods to generate active sites and improve the electrochemical performances of carbon-based materials.In this work,we develop a facile carbonization method to prepare sulfur-doped amorphous carbon microspheres with hierarchical structure and modulated defects concentration(S-CM-700) for potassium storage.Benefiting from the special microstructure,S-CM-700 exhibits the optimal performance and obtains high reversible capacity of 199.6 mAh·g^(-1) at 100 mA·g^(-1),excellent rate property and prominent durability(0.0055%capacity decay per cycle during 1800 cycles).Kinetics analysis and electrochemical characterization are carried out to reveal that the potassium storage could be boosted by regulating the defect level,layer spacing and the content of sulfur-doping.The work provides a general synthesis approach to prepare sustainable carbon anodes for advanced PlBs.展开更多
Rechargeable magnesium batteries are identified as a promising next-generation energy storage system,but their development is hindered by the anode−electrolyte−cathode incompatibilities and passivation of magnesium me...Rechargeable magnesium batteries are identified as a promising next-generation energy storage system,but their development is hindered by the anode−electrolyte−cathode incompatibilities and passivation of magnesium metal anode.To avoid or alleviate these problems,the exploitation of alternative anode materials is a promising choice.Herein,we present titanium pyrophosphate(TiP_(2)O_(7))as anode materials for magnesium-ion batteries(MIBs)and investigate the effect of the crystal phase on its magnesium storage performance.Compared with the me-tastable layered TiP_(2)O_(7),the thermodynamically stable cubic TiP_(2)O_(7) displays a better rate capability of 72 mAh g^(−1) at 5000 mA g^(−1).Moreover,cubic TiP_(2)O_(7) exhibits excellent cycling stability with the capacity of 60 mAh g^(−1) after 5000 cycles at 1000 mA g^(−1),which are better than pre-viously reported Ti-based anode materials for MIBs.In situ X-ray diffraction technology confirms the single-phase magnesiumion inter-calation/deintercalation reaction mechanism of cubic TiP_(2)O_(7) with a low volume change of 3.2%.In addition,the density functional theory calcu-lation results demonstrate that three-dimensional magnesiumion diffu-sion can be allowed in cubic TiP_(2)O_(7) with a low migration energy barrier of 0.62 eV.Our work demonstrates the promise of TiP_(2)O_(7) as high-rate and long-life anode materials for MIBs and may pave the way for further development of MIBs.展开更多
The development of alternative electrode materials with high energy densities and power densities for batteries has been actively pursued to satisfy the power demands for electronic devices and hybrid electric vehicle...The development of alternative electrode materials with high energy densities and power densities for batteries has been actively pursued to satisfy the power demands for electronic devices and hybrid electric vehicles. Recently, antimony(Sb)-based intermetallic compounds have attracted considerable research interests as new candidate anode materials for high-performance lithium-ion batteries(LIBs) and sodium-ion batteries(SIBs) due to their high theoretical capacity and suitable operating voltage. However, these intermetallic systems undergo large volume change during charge and discharge processes, which prohibits them from practical application. The rational construction of advanced anode with unique structures has been proved to be an effective approach to enhance its electrochemical performance. This review highlights the recent progress in improving and understanding the electrochemical performances of various Sb-based intermetallic compound anodes. The developments of synthesis and construction of Sb-based intermetallic compounds are systematically summarized. The electrochemical performances of various Sb-based intermetallic compound anodes are compared in its typical applications(LIBs or SIBs).展开更多
Ether electrolytes for potassium-ion batteries exhibit a broader electrochemical window and greater applicability,yet most of them are high-concentration electrolytes with elevated cost.In this study,we propose the us...Ether electrolytes for potassium-ion batteries exhibit a broader electrochemical window and greater applicability,yet most of them are high-concentration electrolytes with elevated cost.In this study,we propose the use of a weakly solvating cyclic ether electrolyte with tetrahydropyran(THP)as the solvent.This approach induces the formation of a thin and dense inorganic-rich solid electrolyte interphase(SEI)film,which is accompanied by a decrease in the activation energy of electrode interfacial reactions due to the weak ligand binding of THP with K^(+).Density functional theory(DFT)simulations also corroborate the hypothesis that K^(+)has a lower binding energy with THP.During potassium storage process,the phenomenon of solvent co-intercalation of graphite does not occur,which greatly reduces the destruction of the graphite structure and enables a superior electrochemical performance and enhanced cycling stability at a lower concentration(2 M).At a current density of 0.2 C(55.8 mA·g^(-1)),the battery can be stably cycled for 800 cycles(approximately 8 months)with a specific capacity of 171.8 mAh·g^(-1).This study provides a new ether-based electrolyte for potassium ion batteries and effectively reduces the electrolyte cost,which is expected to inspire further development of energy storage batteries.展开更多
基金supported by the National Key Research and Development Program of China(2016YFA0202603)the National Basic Research Program of China(2013CB934103)+5 种基金the National Natural Science Foundation of China(51521001,51602239)the National Natural Science Fund for Distinguished Young Scholars(51425204)Yellow Crane Talent(Science&Technology)Program of Wuhan Citythe Fundamental Research Funds for the Central Universities(WUT:2016III001,2016III003,2016IVA090)the Programme of Introducing Talents of Discipline to Universities(B17034)support from the Lorraine Region(nowpart of Grand Est Region)Cooperation Research Lorraine/Hubei Program 2015/2017
文摘In this work, a fast(0.5 h), green microwave-assisted synthesis of single crystalline Sb_2Se_3 nanowires was developed. For the first time we demonstrated a facile solvent-mediated process, whereby intriguing nanostructures including antimony selenide(Sb_2Se_3) nanowires and selenium(Se) microrods can be achieved by merely varying the volume ratio of ethylene glycol(EG) and H_2O free from expensive chemical and additional surfactant. The achieved uniform Sb_2Se_3 nanowire is single crystalline along [001]growth direction with a diameter of 100 nm and a length up to tens of micrometers. When evaluated as an anode of lithium-ion battery, Sb_2Se_3 nanowire can deliver a high reversible capacity of 650.2 m Ah g^(-1) at 100 mA g^(-1) and a capacity retention of 63.8% after long-term 1000 cycles at 1000 mA g^(-1), as well as superior rate capability(389.5 m Ah g^(-1) at 2000 mA g^(-1)). This easy solvent-mediated microwave synthesis approach exhibits its great universe and importance towards the fabrication of high-performance metal chalcogenide electrode materials for future low-cost, large-scale energy storage systems.
基金financially supported by the National Key Research and Development Program of China (No.2022YFB2404300)the Key R&D Program of Hubei Province(No.2022BAA028)。
文摘The development of high-performance aqueous batteries calls for an in-depth knowledge of their chargedischarge redox and failure mechanism,as well as a systematic understanding of the dynamic evolution of microstructure,phase composition,chemical composition,and local chemical environment of the materials for battery.In-situ characterization technology is expected to understand and reveal the problems faced by aqueous rechargeable batteries,such as the dissolution of electrode materials,the growth of metal negative electrode dendrites,passivation,corrosion,side reactions and a series of problems.Based on this,typical in-situ characterization techniques and their basic mechanisms are summarized,including in-situ optical visualization,in-situ microscopy techniques(in-situ scanning electron microscopy(SEM),in-situ transmission electron microscopy(TEM)),in-situ X-ray techniques(in-situ X-ray diffraction(XRD),in-situ X-ray photoelectron spectroscopy(XPS),in-situ near-edge structural X-ray absorption spectroscopy(XANES)),and in-situ spectroscopy techniques(in-situ Raman spectroscopy,in-situ Fourier transform infrared(FTIR)).Moreover,some emerging techniques concerning aqueous battery research,especially gas evolution and materials dissolution issues,such as in-situ electrochemical quartz crystal microbalance(EQCM).in-situ fiber-optic sensing,in-situ gas chromatography(GC) are introduced.At last,the applications of advanced in-situ characterizations in future research of aqueous batteries are emphasized and discussed,along with some of the remaining challenges and possible solutions.
基金the National Natural Science Foundation of China (No.51832004)the National Natural Science Fund for Distinguished Young Scholars (No.51425204)+2 种基金the National Key R&D Program of China (No.2016YFA0202603)the Programme of Introducing Talents of Discipline to Universities (No.B17034)the Yellow Crane Talent (Science & Technology) Program of Wuhan City.
文摘K-ion battery (KIB) is a new-type energy storage device that possesses potential advantages of low-cost and abundant resource of potassium.To develop advanced electrode materials for accommodating the large size and high activity of potassium ion is of great interests.Herein,a segment-like antimony (Sb) nanorod encapsulated in hollow carbon tube electrode material (Sb@HCT) was prepared.Beneficial from the virtue of abundant nitrogen doping in carbon tube,one-dimensional and hollow structure advantages,Sb@HCT exhibits excellent potassium storage properties:in the case of potassium bis(fluorosulfonyl)imide (KFSI) electrolyte,Sb@HCT displays a reversible capacity of up to 453.4 mAh·g^-1 at a current density of 0.5 A·g^-1 and good rate performance (a capacity of 211.5 mAh·g^-1 could be achieved at an ultrahigh rate of 5 A·g^-1).Additionally,Sb@HCT demonstrates excellent long-cycle stability at a current density of 2 A·g^-1 over 120 cycles.Meanwhile,electrolyte optimization is an effective strategy for greatly improving electrochemical performance.Through ex-situ characterizations,we disclosed the potassiation of Sb anode is quite reversible and undergoes multistep processes,combining solid solution reaction and two-phase reaction.
基金financially supported by the National Natural Science Foundation of China (No.51904216)the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing (No.WUT:2022-KF-4)the National Innovation Training Program for College Students (No. 312040000254)。
文摘Owing to adjustable microstructure and stable physiochemical properties,carbon-based materials are regarded as promising materials as anodes for potassium-ion batteries(PlBs).Building amorphous structure and introducing defects are favorable methods to generate active sites and improve the electrochemical performances of carbon-based materials.In this work,we develop a facile carbonization method to prepare sulfur-doped amorphous carbon microspheres with hierarchical structure and modulated defects concentration(S-CM-700) for potassium storage.Benefiting from the special microstructure,S-CM-700 exhibits the optimal performance and obtains high reversible capacity of 199.6 mAh·g^(-1) at 100 mA·g^(-1),excellent rate property and prominent durability(0.0055%capacity decay per cycle during 1800 cycles).Kinetics analysis and electrochemical characterization are carried out to reveal that the potassium storage could be boosted by regulating the defect level,layer spacing and the content of sulfur-doping.The work provides a general synthesis approach to prepare sustainable carbon anodes for advanced PlBs.
基金This study was supported by the National Natural Science Foundation of China(51832004,U1804253,and 51972259)Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory(XHT2020-003).
文摘Rechargeable magnesium batteries are identified as a promising next-generation energy storage system,but their development is hindered by the anode−electrolyte−cathode incompatibilities and passivation of magnesium metal anode.To avoid or alleviate these problems,the exploitation of alternative anode materials is a promising choice.Herein,we present titanium pyrophosphate(TiP_(2)O_(7))as anode materials for magnesium-ion batteries(MIBs)and investigate the effect of the crystal phase on its magnesium storage performance.Compared with the me-tastable layered TiP_(2)O_(7),the thermodynamically stable cubic TiP_(2)O_(7) displays a better rate capability of 72 mAh g^(−1) at 5000 mA g^(−1).Moreover,cubic TiP_(2)O_(7) exhibits excellent cycling stability with the capacity of 60 mAh g^(−1) after 5000 cycles at 1000 mA g^(−1),which are better than pre-viously reported Ti-based anode materials for MIBs.In situ X-ray diffraction technology confirms the single-phase magnesiumion inter-calation/deintercalation reaction mechanism of cubic TiP_(2)O_(7) with a low volume change of 3.2%.In addition,the density functional theory calcu-lation results demonstrate that three-dimensional magnesiumion diffu-sion can be allowed in cubic TiP_(2)O_(7) with a low migration energy barrier of 0.62 eV.Our work demonstrates the promise of TiP_(2)O_(7) as high-rate and long-life anode materials for MIBs and may pave the way for further development of MIBs.
基金financially supported by the National Key Research and Development Program of China(No.2016YFA0202603)the National Basic Research Program of China(No.2013CB934103)+4 种基金the Program of Introducing Talents of Discipline to Universities(No.B17034)the National Natural Science Foundation of China(No.51521001)the National Natural Science Fund for Distinguished Young Scholars(No.51425204)the Fundamental Research Funds for the Central Universities(Nos.2016III001 and 2016-JL-004)the China Scholarship Council(No.201606955096)
文摘The development of alternative electrode materials with high energy densities and power densities for batteries has been actively pursued to satisfy the power demands for electronic devices and hybrid electric vehicles. Recently, antimony(Sb)-based intermetallic compounds have attracted considerable research interests as new candidate anode materials for high-performance lithium-ion batteries(LIBs) and sodium-ion batteries(SIBs) due to their high theoretical capacity and suitable operating voltage. However, these intermetallic systems undergo large volume change during charge and discharge processes, which prohibits them from practical application. The rational construction of advanced anode with unique structures has been proved to be an effective approach to enhance its electrochemical performance. This review highlights the recent progress in improving and understanding the electrochemical performances of various Sb-based intermetallic compound anodes. The developments of synthesis and construction of Sb-based intermetallic compounds are systematically summarized. The electrochemical performances of various Sb-based intermetallic compound anodes are compared in its typical applications(LIBs or SIBs).
基金financial support from the National Key Research and Development Program of China(No.2022YFB2404300)the National Natural Science Foundation of China(Nos.22409153 and 52101269).
文摘Ether electrolytes for potassium-ion batteries exhibit a broader electrochemical window and greater applicability,yet most of them are high-concentration electrolytes with elevated cost.In this study,we propose the use of a weakly solvating cyclic ether electrolyte with tetrahydropyran(THP)as the solvent.This approach induces the formation of a thin and dense inorganic-rich solid electrolyte interphase(SEI)film,which is accompanied by a decrease in the activation energy of electrode interfacial reactions due to the weak ligand binding of THP with K^(+).Density functional theory(DFT)simulations also corroborate the hypothesis that K^(+)has a lower binding energy with THP.During potassium storage process,the phenomenon of solvent co-intercalation of graphite does not occur,which greatly reduces the destruction of the graphite structure and enables a superior electrochemical performance and enhanced cycling stability at a lower concentration(2 M).At a current density of 0.2 C(55.8 mA·g^(-1)),the battery can be stably cycled for 800 cycles(approximately 8 months)with a specific capacity of 171.8 mAh·g^(-1).This study provides a new ether-based electrolyte for potassium ion batteries and effectively reduces the electrolyte cost,which is expected to inspire further development of energy storage batteries.