期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Breeding by selective introgression: Theory, practices, and lessons learned from rice 被引量:4
1
作者 Fan Zhang Yingyao Shi +2 位作者 jauhar ali Jianlong Xu Zhikang Li 《The Crop Journal》 SCIE CSCD 2021年第3期646-657,共12页
Future demands for increased productivity and resilience to abiotic/biotic stresses of major crops require new technologies of breeding by design(BBD)built on massive information from functional and population genomic... Future demands for increased productivity and resilience to abiotic/biotic stresses of major crops require new technologies of breeding by design(BBD)built on massive information from functional and population genomics research.A novel strategy of breeding by selective introgression(BBSI)has been proposed and practiced for simultaneous improvement,genetic dissection and allele mining of complex traits to realize BBD.BBSI has three phases:a)developing large numbers of trait-specific introgression lines(ILs)using backcross breeding in elite genetic backgrounds as the material platform of BBD;b)efficiently identifying genes or quantitative trait loci(QTL)and mining desirable alleles affecting different target traits from diverse donors as the information platform of BBD;and c)developing superior cultivars by BBD using designed QTL pyramiding or marker-assisted recurrent selection.Phase(a)has been implemented massively in rice by many Chinese research institutions and IRRI,resulting in the development of many new green super rice cultivars plus large numbers of ILs in 30+elite genetic backgrounds.Phase(b)has been demonstrated in a series of proof-of-concept studies of high-efficiency genetic dissection of rice yield and tolerance to abiotic stresses using ILs and DNA markers.Phase(c)has also been implemented by designed QTL pyramiding,resulting in a prototype of BBD in several successful cases.The BBSI strategy can be easily extended for simultaneous trait improvement,efficient gene and QTL discovery and allele mining of complex traits using advanced breeding lines from crosses between a common"backbone"parent and a set of elite parents in conventional pedigree breeding programs.BBSI can be relatively easily adopted by breeding programs with small budgets,but the BBSI-based BBD strategy can be fully and more efficiently implemented by large seed companies with sufficient capacity. 展开更多
关键词 BACKCROSS Trait-specific introgression line Breeding by selective introgression Designed QTL pyramiding
在线阅读 下载PDF
Developing green super rice varieties with high nutrient use efficiency by phenotypic selection under varied nutrient conditions 被引量:1
2
作者 Zilhas Ahmed Jewel jauhar ali +5 位作者 Yunlong Pang Anumalla Mahender Bart Acero Jose Hernandez Jianlong Xu Zhikang Li 《The Crop Journal》 SCIE CAS CSCD 2019年第3期368-377,共10页
The development of green super rice varieties with improved nutrient use efficiency(NuUE)is a vital target area to increase yield and make it more stable under rainfed conditions.In the present study, we followed an e... The development of green super rice varieties with improved nutrient use efficiency(NuUE)is a vital target area to increase yield and make it more stable under rainfed conditions.In the present study, we followed an early backcross(BC) breeding approach by using a highyielding and widely adapted Xian variety, Weed Tolerant Rice 1(WTR-1), as a recipient and a Geng variety, Hao-An-Nong(HAN), as a donor.Starting from the BC1F2 generation, the BC population went through one generation of selection under irrigated, low-input, and rainfed conditions, followed by four consecutive generations of screening and selection for high grain yield(GY) under six different nutrient conditions(NPK, 75 N,-N,-P,-NP, and-NPK), leading to the development of 230 BC1F6 introgression lines(ILs).These 230 ILs were evaluated under the same six nutrient conditions for 13 agro-morphological and grain yield component traits in comparison to four checks and parents.Significant trait variations were observed between the treatments and ILs.Positive correlations were identified for GY with biomass, panicle length, flag-leaf area, flag-leaf width, filled grain number per panicle,1000-grain weight, and tiller number under-N,-P,-NP, and-NPK conditions.Out of 230 ILs,12 were identified as promising under two or more nutrient deficiency conditions.The results demonstrated an efficient inter-subspecific BC breeding procedure with a first round of selection under rainfed-drought conditions, followed by four generations of progeny testing for yield performance under six nutrient conditions.The promising ILs can be useful resources for molecular genetic dissection and understanding the physiological mechanisms of NuUE. 展开更多
关键词 Nutrient use efficiency Grain yield NITROGEN PHOSPHORUS Green super rice
在线阅读 下载PDF
From Green Super Rice to green agriculture:Reaping the promise of functional genomics research 被引量:16
3
作者 Sibin Yu jauhar ali +26 位作者 Shaochuan Zhou Guangjun Ren Huaan Xie Jianlong Xu Xinqiao Yu Fasong Zhou Shaobing Peng Liangyong Ma Dingyang Yuan Zefu Li Dazhou Chen Ruifeng Zheng Zhigang Zhao Chengcai Chu Aiqing You Yu Wei Susong Zhu Qiongyao Gu Guangcun He Shigui Li Guifu Liu Changhua Liu Chaopu Zhang Jinghua Xiao Lijun Luo Zhikang Li Qifa Zhang 《Molecular Plant》 SCIE CAS CSCD 2022年第1期9-26,共18页
Producing sufficient food with finite resources to feed the growing global population while having a smaller impact on the environment has always been a great challenge.Here,we review the concept and practices of Gree... Producing sufficient food with finite resources to feed the growing global population while having a smaller impact on the environment has always been a great challenge.Here,we review the concept and practices of Green Super Rice(GSR)that have led to a paradigm shift in goals for crop genetic improvement and models of food production for promoting sustainable agriculture.The momentous achievements and global deliveries of GSR have been fueled by the integration of abundant genetic resources,functional gene discoveries,and innovative breeding techniques with precise gene and whole-genome selection and efficient agronomic management to promote resource-saving,environmentally friendly crop production systems.We also provide perspectives on new horizons in genomic breeding technologies geared toward delivering green and nutritious crop varieties to further enhance the development of green agricul-ture and better nourish the world population. 展开更多
关键词 RICE functional genomics Green Super Rice genomic breeding nutritious crops sustainable agriculture
原文传递
Exploring and exploiting the rice phytobiome to tackle climate change challenges
4
作者 Seyed Mahdi Hosseiniyan Khatibi Niña Gracel Dimaano +2 位作者 Esteban Veliz Venkatesan Sundaresan jauhar ali 《Plant Communications》 2024年第12期30-52,共23页
The future of agriculture is uncertain under the current climate change scenario. Climate change directly and indirectly affects the biotic and abiotic elements that control agroecosystems, jeopardizing the safety of ... The future of agriculture is uncertain under the current climate change scenario. Climate change directly and indirectly affects the biotic and abiotic elements that control agroecosystems, jeopardizing the safety of the world’s food supply. A new area that focuses on characterizing the phytobiome is emerging. The phytobiome comprises plants and their immediate surroundings, involving numerous interdependent microscopic and macroscopic organisms that affect the health and productivity of plants. Phytobiome studies primarily focus on the microbial communities associated with plants, which are referred to as the plant microbiome. The development of high-throughput sequencing technologies over the past 10 years has dramatically advanced our understanding of the structure, functionality, and dynamics of the phytobiome;however, comprehensive methods for using this knowledge are lacking, particularly for major crops such as rice. Considering the impact of rice production on world food security, gaining fresh perspectives on the interdependent and interrelated components of the rice phytobiome could enhance rice production and crop health, sustain rice ecosystem function, and combat the effects of climate change. Our review re-conceptualizes the complex dynamics of the microscopic and macroscopic components in the rice phytobiome as influenced by human interventions and changing environmental conditions driven by climate change. We also discuss interdisciplinary and systematic approaches to decipher and reprogram the sophisticated interactions in the rice phytobiome using novel strategies and cutting-edge technology. Merging the gigantic datasets and complex information on the rice phytobiome and their application in the context of regenerative agriculture could lead to sustainable rice farming practices that are resilient to the impacts of climate change. 展开更多
关键词 artificial intelligence climate change rice microbiome rice phytobiome microbial ecology rhizo-sphere engineering
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部