Future demands for increased productivity and resilience to abiotic/biotic stresses of major crops require new technologies of breeding by design(BBD)built on massive information from functional and population genomic...Future demands for increased productivity and resilience to abiotic/biotic stresses of major crops require new technologies of breeding by design(BBD)built on massive information from functional and population genomics research.A novel strategy of breeding by selective introgression(BBSI)has been proposed and practiced for simultaneous improvement,genetic dissection and allele mining of complex traits to realize BBD.BBSI has three phases:a)developing large numbers of trait-specific introgression lines(ILs)using backcross breeding in elite genetic backgrounds as the material platform of BBD;b)efficiently identifying genes or quantitative trait loci(QTL)and mining desirable alleles affecting different target traits from diverse donors as the information platform of BBD;and c)developing superior cultivars by BBD using designed QTL pyramiding or marker-assisted recurrent selection.Phase(a)has been implemented massively in rice by many Chinese research institutions and IRRI,resulting in the development of many new green super rice cultivars plus large numbers of ILs in 30+elite genetic backgrounds.Phase(b)has been demonstrated in a series of proof-of-concept studies of high-efficiency genetic dissection of rice yield and tolerance to abiotic stresses using ILs and DNA markers.Phase(c)has also been implemented by designed QTL pyramiding,resulting in a prototype of BBD in several successful cases.The BBSI strategy can be easily extended for simultaneous trait improvement,efficient gene and QTL discovery and allele mining of complex traits using advanced breeding lines from crosses between a common"backbone"parent and a set of elite parents in conventional pedigree breeding programs.BBSI can be relatively easily adopted by breeding programs with small budgets,but the BBSI-based BBD strategy can be fully and more efficiently implemented by large seed companies with sufficient capacity.展开更多
The development of green super rice varieties with improved nutrient use efficiency(NuUE)is a vital target area to increase yield and make it more stable under rainfed conditions.In the present study, we followed an e...The development of green super rice varieties with improved nutrient use efficiency(NuUE)is a vital target area to increase yield and make it more stable under rainfed conditions.In the present study, we followed an early backcross(BC) breeding approach by using a highyielding and widely adapted Xian variety, Weed Tolerant Rice 1(WTR-1), as a recipient and a Geng variety, Hao-An-Nong(HAN), as a donor.Starting from the BC1F2 generation, the BC population went through one generation of selection under irrigated, low-input, and rainfed conditions, followed by four consecutive generations of screening and selection for high grain yield(GY) under six different nutrient conditions(NPK, 75 N,-N,-P,-NP, and-NPK), leading to the development of 230 BC1F6 introgression lines(ILs).These 230 ILs were evaluated under the same six nutrient conditions for 13 agro-morphological and grain yield component traits in comparison to four checks and parents.Significant trait variations were observed between the treatments and ILs.Positive correlations were identified for GY with biomass, panicle length, flag-leaf area, flag-leaf width, filled grain number per panicle,1000-grain weight, and tiller number under-N,-P,-NP, and-NPK conditions.Out of 230 ILs,12 were identified as promising under two or more nutrient deficiency conditions.The results demonstrated an efficient inter-subspecific BC breeding procedure with a first round of selection under rainfed-drought conditions, followed by four generations of progeny testing for yield performance under six nutrient conditions.The promising ILs can be useful resources for molecular genetic dissection and understanding the physiological mechanisms of NuUE.展开更多
Producing sufficient food with finite resources to feed the growing global population while having a smaller impact on the environment has always been a great challenge.Here,we review the concept and practices of Gree...Producing sufficient food with finite resources to feed the growing global population while having a smaller impact on the environment has always been a great challenge.Here,we review the concept and practices of Green Super Rice(GSR)that have led to a paradigm shift in goals for crop genetic improvement and models of food production for promoting sustainable agriculture.The momentous achievements and global deliveries of GSR have been fueled by the integration of abundant genetic resources,functional gene discoveries,and innovative breeding techniques with precise gene and whole-genome selection and efficient agronomic management to promote resource-saving,environmentally friendly crop production systems.We also provide perspectives on new horizons in genomic breeding technologies geared toward delivering green and nutritious crop varieties to further enhance the development of green agricul-ture and better nourish the world population.展开更多
The future of agriculture is uncertain under the current climate change scenario. Climate change directly and indirectly affects the biotic and abiotic elements that control agroecosystems, jeopardizing the safety of ...The future of agriculture is uncertain under the current climate change scenario. Climate change directly and indirectly affects the biotic and abiotic elements that control agroecosystems, jeopardizing the safety of the world’s food supply. A new area that focuses on characterizing the phytobiome is emerging. The phytobiome comprises plants and their immediate surroundings, involving numerous interdependent microscopic and macroscopic organisms that affect the health and productivity of plants. Phytobiome studies primarily focus on the microbial communities associated with plants, which are referred to as the plant microbiome. The development of high-throughput sequencing technologies over the past 10 years has dramatically advanced our understanding of the structure, functionality, and dynamics of the phytobiome;however, comprehensive methods for using this knowledge are lacking, particularly for major crops such as rice. Considering the impact of rice production on world food security, gaining fresh perspectives on the interdependent and interrelated components of the rice phytobiome could enhance rice production and crop health, sustain rice ecosystem function, and combat the effects of climate change. Our review re-conceptualizes the complex dynamics of the microscopic and macroscopic components in the rice phytobiome as influenced by human interventions and changing environmental conditions driven by climate change. We also discuss interdisciplinary and systematic approaches to decipher and reprogram the sophisticated interactions in the rice phytobiome using novel strategies and cutting-edge technology. Merging the gigantic datasets and complex information on the rice phytobiome and their application in the context of regenerative agriculture could lead to sustainable rice farming practices that are resilient to the impacts of climate change.展开更多
基金funded by the National Key Research&Development Program of China(2017YFD0100100)Key-Area Research&Development Program of Guangdong Province(2020B020219004)+2 种基金Shenzhen Basic Research Special Project(2020231601)Agricultural Science and Technology Innovation Programthe Cooperation and Innovation Mission(CAAS2021-01)。
文摘Future demands for increased productivity and resilience to abiotic/biotic stresses of major crops require new technologies of breeding by design(BBD)built on massive information from functional and population genomics research.A novel strategy of breeding by selective introgression(BBSI)has been proposed and practiced for simultaneous improvement,genetic dissection and allele mining of complex traits to realize BBD.BBSI has three phases:a)developing large numbers of trait-specific introgression lines(ILs)using backcross breeding in elite genetic backgrounds as the material platform of BBD;b)efficiently identifying genes or quantitative trait loci(QTL)and mining desirable alleles affecting different target traits from diverse donors as the information platform of BBD;and c)developing superior cultivars by BBD using designed QTL pyramiding or marker-assisted recurrent selection.Phase(a)has been implemented massively in rice by many Chinese research institutions and IRRI,resulting in the development of many new green super rice cultivars plus large numbers of ILs in 30+elite genetic backgrounds.Phase(b)has been demonstrated in a series of proof-of-concept studies of high-efficiency genetic dissection of rice yield and tolerance to abiotic stresses using ILs and DNA markers.Phase(c)has also been implemented by designed QTL pyramiding,resulting in a prototype of BBD in several successful cases.The BBSI strategy can be easily extended for simultaneous trait improvement,efficient gene and QTL discovery and allele mining of complex traits using advanced breeding lines from crosses between a common"backbone"parent and a set of elite parents in conventional pedigree breeding programs.BBSI can be relatively easily adopted by breeding programs with small budgets,but the BBSI-based BBD strategy can be fully and more efficiently implemented by large seed companies with sufficient capacity.
基金the Bill & Melinda Gates Foundation (BMGF) for providing a research grant to Z.L.for the Green Super Rice project under ID OPP1130530the Department of Agriculture of the Philippines for providing funds to J.A.under the Next-Gen project.
文摘The development of green super rice varieties with improved nutrient use efficiency(NuUE)is a vital target area to increase yield and make it more stable under rainfed conditions.In the present study, we followed an early backcross(BC) breeding approach by using a highyielding and widely adapted Xian variety, Weed Tolerant Rice 1(WTR-1), as a recipient and a Geng variety, Hao-An-Nong(HAN), as a donor.Starting from the BC1F2 generation, the BC population went through one generation of selection under irrigated, low-input, and rainfed conditions, followed by four consecutive generations of screening and selection for high grain yield(GY) under six different nutrient conditions(NPK, 75 N,-N,-P,-NP, and-NPK), leading to the development of 230 BC1F6 introgression lines(ILs).These 230 ILs were evaluated under the same six nutrient conditions for 13 agro-morphological and grain yield component traits in comparison to four checks and parents.Significant trait variations were observed between the treatments and ILs.Positive correlations were identified for GY with biomass, panicle length, flag-leaf area, flag-leaf width, filled grain number per panicle,1000-grain weight, and tiller number under-N,-P,-NP, and-NPK conditions.Out of 230 ILs,12 were identified as promising under two or more nutrient deficiency conditions.The results demonstrated an efficient inter-subspecific BC breeding procedure with a first round of selection under rainfed-drought conditions, followed by four generations of progeny testing for yield performance under six nutrient conditions.The promising ILs can be useful resources for molecular genetic dissection and understanding the physiological mechanisms of NuUE.
基金the National High Technology Research and Development Program of China(2014AA10A604)the Bill&Melinda Gates Foundation(OPP1130530)+1 种基金the Earmarked Fund for the China Agricultural Research System of China(CARS-01-06)Hubei Special Major Projects for Technological Innovation(2019ABA104,2020ABA016).
文摘Producing sufficient food with finite resources to feed the growing global population while having a smaller impact on the environment has always been a great challenge.Here,we review the concept and practices of Green Super Rice(GSR)that have led to a paradigm shift in goals for crop genetic improvement and models of food production for promoting sustainable agriculture.The momentous achievements and global deliveries of GSR have been fueled by the integration of abundant genetic resources,functional gene discoveries,and innovative breeding techniques with precise gene and whole-genome selection and efficient agronomic management to promote resource-saving,environmentally friendly crop production systems.We also provide perspectives on new horizons in genomic breeding technologies geared toward delivering green and nutritious crop varieties to further enhance the development of green agricul-ture and better nourish the world population.
基金International Rice Research Institute-Hybrid Rice Development Consortium and the AGGRi Alliance project“Accelerated Genetic Gains in Rice Alliance”by the Bill and Melinda Gates Foundation through grant no.OPP1194925-INV 008226.
文摘The future of agriculture is uncertain under the current climate change scenario. Climate change directly and indirectly affects the biotic and abiotic elements that control agroecosystems, jeopardizing the safety of the world’s food supply. A new area that focuses on characterizing the phytobiome is emerging. The phytobiome comprises plants and their immediate surroundings, involving numerous interdependent microscopic and macroscopic organisms that affect the health and productivity of plants. Phytobiome studies primarily focus on the microbial communities associated with plants, which are referred to as the plant microbiome. The development of high-throughput sequencing technologies over the past 10 years has dramatically advanced our understanding of the structure, functionality, and dynamics of the phytobiome;however, comprehensive methods for using this knowledge are lacking, particularly for major crops such as rice. Considering the impact of rice production on world food security, gaining fresh perspectives on the interdependent and interrelated components of the rice phytobiome could enhance rice production and crop health, sustain rice ecosystem function, and combat the effects of climate change. Our review re-conceptualizes the complex dynamics of the microscopic and macroscopic components in the rice phytobiome as influenced by human interventions and changing environmental conditions driven by climate change. We also discuss interdisciplinary and systematic approaches to decipher and reprogram the sophisticated interactions in the rice phytobiome using novel strategies and cutting-edge technology. Merging the gigantic datasets and complex information on the rice phytobiome and their application in the context of regenerative agriculture could lead to sustainable rice farming practices that are resilient to the impacts of climate change.