Adjuvant chemotherapy improves the survival outlook for patients undergoing operations for lung metastases caused by colorectal cancer (CRC). However, a multidisciplinary approach that evaluates several factors relate...Adjuvant chemotherapy improves the survival outlook for patients undergoing operations for lung metastases caused by colorectal cancer (CRC). However, a multidisciplinary approach that evaluates several factors related to patient and tumor characteristics is necessary for managing chemotherapy treatment in metastatic CRC patients with lung disease, as such factors dictate the timing and drug regimen, which may affect treatment response and prognosis. In this study, we explore the potential of spatial metabolomics for evaluating metabolic phenotypes and therapy outcomes during the local delivery of the anticancer drug, oxaliplatin, to the lung. 12 male Yorkshire pigs underwent a 3 h left lung in vivo lung perfusion (IVLP) with various doses of oxaliplatin (7.5, 10, 20, 40, and 80 mg/L), which were administered to the perfusion circuit reservoir as a bolus. Biocompatible solid-phase microextraction (SPME) microprobes were combined with global metabolite profiling to obtain spatiotemporal information about the activity of the drug, determine toxic doses that exceed therapeutic efficacy, and conduct a mechanistic exploration of associated lung injury. Mild and subclinical lung injury was observed at 40 mg/L of oxaliplatin, and significant compromise of the hemodynamic lung function was found at 80 mg/L. This result was associated with massive alterations in metabolic patterns of lung tissue and perfusate, resulting in a total of 139 discriminant compounds. Uncontrolled inflammatory response, abnormalities in energy metabolism, and mitochondrial dysfunction next to accelerated kynurenine and aldosterone production were recognized as distinct features of dysregulated metabolipidome. Spatial pharmacometabolomics may be a promising tool for identifying pathological responses to chemotherapy.展开更多
1.Introduction In vivo analysis provides more accurate information for indicating or predicting the processes occurring in the complex living organisms compared with the ex vivo study.Combining in vivo sampling with l...1.Introduction In vivo analysis provides more accurate information for indicating or predicting the processes occurring in the complex living organisms compared with the ex vivo study.Combining in vivo sampling with liquid chromatography(LC)/gas chromatographymass spectrometry(GC-MS)analysis is the most powerful technique for obtaining comprehensive information,as it can yield both targeted and nontargeted data with quantitative capability.Microdialysis(MD)is a widely used method for in vivo sampling over the years,especially valued for its ability to collect samples continuously over time.However,MD analysis is limited by a few drawbacks that create the need for complementary and/or alternative sampling methods.First,sampling of nonpolar compounds can present a problem in MD analysis.As nonpolar compounds are typically highly bound to tissue matrix,they are only available in very low free concentration levels that limit their detection and quantitation.In some cases,such compounds can also adsorb onto the membrane and/or tubes used in MD.Secondly,collected samples require subsequent sample preparation,such as liquid extraction or solid-phase extraction,prior to chromatographic separation and MS analysis.In addition to being timeconsuming and labour intensive,these additional sample preparation steps can also lead to the decomposition of some unstable compounds,and thus negatively impact the accuracy and precisionof thefinal data.展开更多
Development of a novel in vivo lung perfusion(IVLP)procedure allows localized delivery of high-dose doxorubicin(DOX)for targeting residual micrometastatic disease in the lungs.However,DOX delivery via IVLP requires ca...Development of a novel in vivo lung perfusion(IVLP)procedure allows localized delivery of high-dose doxorubicin(DOX)for targeting residual micrometastatic disease in the lungs.However,DOX delivery via IVLP requires careful monitoring of drug level to ensure tissue concentrations of this agent remain in the therapeutic window.A small dimension nitinol wire coated with a sorbent of biocompatible morphology(Bio-SPME)has been clinically evaluated for in vivo lung tissue extraction and determination of DOX and its key metabolites.The in vivo Bio-SPME-IVLP experiments were performed on pig model over various(150 and 225 mg/m^(2))drug doses,and during human clinical trial.Two patients with metastatic osteosarcoma were treated with a single 5 and 7 μg/mL(respectively)dose of DOX during a 3-h IVLP.In both pig and human cases,DOX tissue levels presented similar trends during IVLP.Human lung tissue concentrations of drug ranged between 15 and 293 μg/g over the course of the IVLP procedure.In addition to DOX levels,Bio-SPME followed by liquid chromatography-mass spectrometry analysis generated 64 metabolic features during endogenous metabolite screening,providing information about lung status during drug administration.Real-time monitoring of DOX levels in the lungs can be performed effectively throughout the IVLP procedure by in vivo Bio-SPME chemical biopsy approach.Bio-SPME also extracted various endogenous molecules,thus providing a real-time snapshot of the physiology of the cells,which might assist in the tailoring of personalized treatment strategy.展开更多
Improved analytical methods for the metabolomic profiling of tissue samples are constantly needed.Currently,conventional sample preparation methods often involve tissue biopsy and/or homogenization,which disrupts the ...Improved analytical methods for the metabolomic profiling of tissue samples are constantly needed.Currently,conventional sample preparation methods often involve tissue biopsy and/or homogenization,which disrupts the endogenous metabolome.In this study,solid-phase microextraction(SPME)fibers were used to monitor changes in endogenous compounds in homogenized and intact ovine lung tissue.Following SPME,a Biocrates AbsoluteIDQ assay was applied to make a downstream targeted metabolomics analysis and confirm the advantages of in vivo SPME metabolomics.The AbsoluteIDQ kit enabled the targeted analysis of over 100 metabolites via solid-liquid extraction and SPME.Statistical analysis revealed significant differences between conventional liquid extractions from homogenized tissue and SPME results for both homogenized and intact tissue samples.In addition,principal component analysis revealed separated clustering among all the three sample groups,indicating changes in the metabolome due to tissue homogenization and the chosen sample preparation method.Furthermore,clear differences in free metabolites were observed when extractions were performed on the intact and homogenized tissue using identical SPME procedures.Specifically,a direct comparison showed that 47 statistically distinct metabolites were detected between the homogenized and intact lung tissue samples(P<0.05)using mixed-mode SPME fibers.These changes were probably due to the disruptive homogenization of the tissue.This study's findings highlight both the importance of sample preparation in tissue-based metabolomics studies and SPME's unique ability to perform minimally invasive extractions without tissue biopsy or homogenization while providing broad metabolite coverage.展开更多
In vivo lung perfusion(IVLP)is a novel isolated lung technique developed to enable the local,in situ administration of high-dose chemotherapy to treat metastatic lung cancer.Combination therapy using folinic acid(FOL)...In vivo lung perfusion(IVLP)is a novel isolated lung technique developed to enable the local,in situ administration of high-dose chemotherapy to treat metastatic lung cancer.Combination therapy using folinic acid(FOL),5-fluorouracil(F),and oxaliplatin(OX)(FOLFOX)is routinely employed to treat several types of solid tumours in various tissues.However,F is characterized by large interpatient variability with respect to plasma concentration,which necessitates close monitoring during treatments using of this compound.Since plasma drug concentrations often do not reflect tissue drug concentrations,it is essential to utilize sample-preparation methods specifically suited to monitoring drug levels in target organs.In this work,in vivo solid-phase microextraction(in vivo SPME)is proposed as an effective tool for quantitative therapeutic drug monitoring of FOLFOX in porcine lungs during pre-clinical IVLP and intravenous(IV)trials.The concomitant extraction of other endogenous and exogenous small molecules from the lung and their detection via liquid chromatography coupled to high resolution mass spectrometry(LC-HRMS)enabled an assessment of FOLFOX's impact on the metabolomic profile of the lung and revealed the metabolic pathways associated with the route of administration(IVLP vs.IV)and the therapy itself.This study also shows that the immediate instrumental analysis of metabolomic samples is ideal,as long-term storage at80℃ results in changes in the metabolite content in the sample extracts.展开更多
A metabolic profile of plasma samples from patients undergoing heart surgery with the use of cardiopulmonary bypass (CPB) and concurrent administration of tranexamic acid was determined. Direct immersion solid phase...A metabolic profile of plasma samples from patients undergoing heart surgery with the use of cardiopulmonary bypass (CPB) and concurrent administration of tranexamic acid was determined. Direct immersion solid phase microextraction (DI-SPME), a new sampling and sample preparation tool for metabolomics, was used in this study for the first time to investigate clinical samples. The results showed alteration of diverse compounds involved in different biochemical pathways. The most significant contribution in changes induced by surgery and applied pharmacotherapy was noticed in metabolic profile of lysophospholipids, triacylglycerols, mediators of platelet aggregation, and linoleic acid metabolites. Two cases of individual response to treatment were also reported.展开更多
Normothermic ex vivo lung perfusion(NEVLP)has emerged as a modernized organ preservation technique that allows for detailed assessment of donor lung function prior to transplantation.The main goal of this study was to...Normothermic ex vivo lung perfusion(NEVLP)has emerged as a modernized organ preservation technique that allows for detailed assessment of donor lung function prior to transplantation.The main goal of this study was to identify potential biomarkers of lung function and/or injury during a prolonged(19 h)NEVLP procedure using in vivo solid-phase microextraction(SPME)technology followed by liquid chromatography-high resolution mass spectrometry(LC-HRMS).The use of minimally invasive in vivo SPME fibers for repeated sampling of biological tissue permits the monitoring and evaluation of biochemical changes and alterations in the metabolomic profile of the lung.These in vivo SPME fibers were directly introduced into the lung and were also used to extract metabolites(on-site SPME)from fresh perfusate samples collected alongside lung samplings.A subsequent goal of the study was to assess the feasibility of SPME as an in vivo method in metabolomics studies,in comparison to the traditional inlab metabolomics workflow.Several upregulated biochemical pathways involved in pro-and antiinflammatory responses,as well as lipid metabolism,were observed during extended lung perfusion,especially between the 11th and 12th hours of the procedure,in both lung and perfusate samples.However,several unstable and/or short-lived metabolites,such as neuroprostanes,have been extracted from lung tissue in vivo using SPME fibers.On-site monitoring of the metabolomic profiles of both lung tissues through in vivo SPME and perfusate samples on site throughout the prolonged NEVLP procedure can be effectively performed using in vivo SPME technology.展开更多
The direct coupling of solid-phase microextraction(SPME)to mass spectrometry(MS)(SPME-MS)has proven to be an effective method for the fast screening and quantitative analysis of compounds in complex matrices such as b...The direct coupling of solid-phase microextraction(SPME)to mass spectrometry(MS)(SPME-MS)has proven to be an effective method for the fast screening and quantitative analysis of compounds in complex matrices such as blood and plasma.In recent years,our lab has developed three novel SPME-MS techniques:SPME-microfluidic open interface-MS(SPME-MOI-MS),coated blade spray-MS(CBS-MS),and SPME-probe electrospray ionization-MS(SPME-PESI-MS).The fast and high-throughput nature of these SPME-MS technologies makes them attractive options for point-of-care analysis and anti-doping testing.However,all these three techniques utilize different SPME geometries and were tested with different MS instruments.Lack of comparative data makes it difficult to determine which of these methodologies is the best option for any given application.This work fills this gap by making a comprehensive comparison of these three technologies with different SPME devices including SPME fibers,CBS blades,and SPME-PESI probes and SPME-liquid chromatography-MS(SPME-LC-MS)for the analysis of drugs of abuse using the same MS instrument.Furthermore,for the first time,we developed different desorption chambers for MOI-MS for coupling with SPME fibers,CBS blades,and SPME-PESI probes,thus illustrating the universality of this approach.In total,eight analytical methods were developed,with the experimental data showing that all the SPME-based methods provided good analytical performance with R^(2)of linearities larger than 0.9925,accuracies between 81%and 118%,and good precision with an RSD%≤13%.展开更多
The solid-phase microextraction technique quantifies analytes without considerably affecting the sample composition.Herein,a proof-of-concept study was conducted to demonstrate the use of coated probe electrospray ion...The solid-phase microextraction technique quantifies analytes without considerably affecting the sample composition.Herein,a proof-of-concept study was conducted to demonstrate the use of coated probe electrospray ionization(coated-PESI)and coated blade spray(CBS)as ambient mass spectrometry approaches for monitoring drug biotransformation.The ability of these methods was investigated for monitoring the dephosphorylation of a prodrug,combretastatin A4 phosphate(CA4P),into its active form,combretastatin A4(CA4),in a cell culture medium supplemented with fetal bovine serum.The CBS spot analysis was modified to achieve the same extraction efficiency as protein precipitation and obtained results in 7 min.Because coated-PESI performs extraction without consuming any samples,it is the preferred technique in the case of a limited sample volume.Although coated-PESI only extracts small quantities of analytes,it uses the desorption solvent volume of 5-10 pL,resulting in high sensitivity,thus allowing the detection of compounds after only 1 min of extraction.The biotransformation of CA4P into CA4 via phosphatases occurs within the simple matrix,and the proposed sample preparation techniques are suitable for monitoring the biotransformation.展开更多
Environmental pollution is escalating due to rapid global development that often prioritizes human needs over planetary health.Despite global efforts to mitigate legacy pollutants,the continuous introduction of new su...Environmental pollution is escalating due to rapid global development that often prioritizes human needs over planetary health.Despite global efforts to mitigate legacy pollutants,the continuous introduction of new substances remains a major threat to both people and the planet.In response,global initiatives are focusing on risk assessment and regulation of emerging contaminants,as demonstrated by the ongoing efforts to establish the UN’s Intergovernmental Science-Policy Panel on Chemicals,Waste,and Pollution Prevention.This review identifies the sources and impacts of emerging contaminants on planetary health,emphasizing the importance of adopting a One Health approach.Strategies for monitoring and addressing these pollutants are discussed,underscoring the need for robust and socially equitable environmental policies at both regional and international levels.Urgent actions are needed to transition toward sustainable pollution management practices to safeguard our planet for future generations.展开更多
基金supported by the Canadian Institute of Health Research(CIHR)-Natural Sciences and Engineering Research Council(NSERC)of Canada Collaborative Health Research Projects program(Grant No.:355935)as well as by NSERC through the Industrial Research Chair(IRC)program(Program No.:#IRCPJ 184412e15).
文摘Adjuvant chemotherapy improves the survival outlook for patients undergoing operations for lung metastases caused by colorectal cancer (CRC). However, a multidisciplinary approach that evaluates several factors related to patient and tumor characteristics is necessary for managing chemotherapy treatment in metastatic CRC patients with lung disease, as such factors dictate the timing and drug regimen, which may affect treatment response and prognosis. In this study, we explore the potential of spatial metabolomics for evaluating metabolic phenotypes and therapy outcomes during the local delivery of the anticancer drug, oxaliplatin, to the lung. 12 male Yorkshire pigs underwent a 3 h left lung in vivo lung perfusion (IVLP) with various doses of oxaliplatin (7.5, 10, 20, 40, and 80 mg/L), which were administered to the perfusion circuit reservoir as a bolus. Biocompatible solid-phase microextraction (SPME) microprobes were combined with global metabolite profiling to obtain spatiotemporal information about the activity of the drug, determine toxic doses that exceed therapeutic efficacy, and conduct a mechanistic exploration of associated lung injury. Mild and subclinical lung injury was observed at 40 mg/L of oxaliplatin, and significant compromise of the hemodynamic lung function was found at 80 mg/L. This result was associated with massive alterations in metabolic patterns of lung tissue and perfusate, resulting in a total of 139 discriminant compounds. Uncontrolled inflammatory response, abnormalities in energy metabolism, and mitochondrial dysfunction next to accelerated kynurenine and aldosterone production were recognized as distinct features of dysregulated metabolipidome. Spatial pharmacometabolomics may be a promising tool for identifying pathological responses to chemotherapy.
基金thank Natural Science and Engineering Research Council(NSERC)of Canada and National Institute of Mental Health(Grant No.:R01MH129641)for their financial support.
文摘1.Introduction In vivo analysis provides more accurate information for indicating or predicting the processes occurring in the complex living organisms compared with the ex vivo study.Combining in vivo sampling with liquid chromatography(LC)/gas chromatographymass spectrometry(GC-MS)analysis is the most powerful technique for obtaining comprehensive information,as it can yield both targeted and nontargeted data with quantitative capability.Microdialysis(MD)is a widely used method for in vivo sampling over the years,especially valued for its ability to collect samples continuously over time.However,MD analysis is limited by a few drawbacks that create the need for complementary and/or alternative sampling methods.First,sampling of nonpolar compounds can present a problem in MD analysis.As nonpolar compounds are typically highly bound to tissue matrix,they are only available in very low free concentration levels that limit their detection and quantitation.In some cases,such compounds can also adsorb onto the membrane and/or tubes used in MD.Secondly,collected samples require subsequent sample preparation,such as liquid extraction or solid-phase extraction,prior to chromatographic separation and MS analysis.In addition to being timeconsuming and labour intensive,these additional sample preparation steps can also lead to the decomposition of some unstable compounds,and thus negatively impact the accuracy and precisionof thefinal data.
文摘Development of a novel in vivo lung perfusion(IVLP)procedure allows localized delivery of high-dose doxorubicin(DOX)for targeting residual micrometastatic disease in the lungs.However,DOX delivery via IVLP requires careful monitoring of drug level to ensure tissue concentrations of this agent remain in the therapeutic window.A small dimension nitinol wire coated with a sorbent of biocompatible morphology(Bio-SPME)has been clinically evaluated for in vivo lung tissue extraction and determination of DOX and its key metabolites.The in vivo Bio-SPME-IVLP experiments were performed on pig model over various(150 and 225 mg/m^(2))drug doses,and during human clinical trial.Two patients with metastatic osteosarcoma were treated with a single 5 and 7 μg/mL(respectively)dose of DOX during a 3-h IVLP.In both pig and human cases,DOX tissue levels presented similar trends during IVLP.Human lung tissue concentrations of drug ranged between 15 and 293 μg/g over the course of the IVLP procedure.In addition to DOX levels,Bio-SPME followed by liquid chromatography-mass spectrometry analysis generated 64 metabolic features during endogenous metabolite screening,providing information about lung status during drug administration.Real-time monitoring of DOX levels in the lungs can be performed effectively throughout the IVLP procedure by in vivo Bio-SPME chemical biopsy approach.Bio-SPME also extracted various endogenous molecules,thus providing a real-time snapshot of the physiology of the cells,which might assist in the tailoring of personalized treatment strategy.
基金supported by the Natural Sciences and Engineering Research Council of Canada,NSERC(Grant No.:IRCPJ 184412-15).
文摘Improved analytical methods for the metabolomic profiling of tissue samples are constantly needed.Currently,conventional sample preparation methods often involve tissue biopsy and/or homogenization,which disrupts the endogenous metabolome.In this study,solid-phase microextraction(SPME)fibers were used to monitor changes in endogenous compounds in homogenized and intact ovine lung tissue.Following SPME,a Biocrates AbsoluteIDQ assay was applied to make a downstream targeted metabolomics analysis and confirm the advantages of in vivo SPME metabolomics.The AbsoluteIDQ kit enabled the targeted analysis of over 100 metabolites via solid-liquid extraction and SPME.Statistical analysis revealed significant differences between conventional liquid extractions from homogenized tissue and SPME results for both homogenized and intact tissue samples.In addition,principal component analysis revealed separated clustering among all the three sample groups,indicating changes in the metabolome due to tissue homogenization and the chosen sample preparation method.Furthermore,clear differences in free metabolites were observed when extractions were performed on the intact and homogenized tissue using identical SPME procedures.Specifically,a direct comparison showed that 47 statistically distinct metabolites were detected between the homogenized and intact lung tissue samples(P<0.05)using mixed-mode SPME fibers.These changes were probably due to the disruptive homogenization of the tissue.This study's findings highlight both the importance of sample preparation in tissue-based metabolomics studies and SPME's unique ability to perform minimally invasive extractions without tissue biopsy or homogenization while providing broad metabolite coverage.
基金Institutes of Health Research(CIHR)-Natural Sciences and Engineering Research Council(NSERC)of the Canada Collaborative Health Research Projects program for their financial support(Grant No.:355935)the Natural Sciences and Engineering Research Council of Canada Industrial Research Chair(IRC)program。
文摘In vivo lung perfusion(IVLP)is a novel isolated lung technique developed to enable the local,in situ administration of high-dose chemotherapy to treat metastatic lung cancer.Combination therapy using folinic acid(FOL),5-fluorouracil(F),and oxaliplatin(OX)(FOLFOX)is routinely employed to treat several types of solid tumours in various tissues.However,F is characterized by large interpatient variability with respect to plasma concentration,which necessitates close monitoring during treatments using of this compound.Since plasma drug concentrations often do not reflect tissue drug concentrations,it is essential to utilize sample-preparation methods specifically suited to monitoring drug levels in target organs.In this work,in vivo solid-phase microextraction(in vivo SPME)is proposed as an effective tool for quantitative therapeutic drug monitoring of FOLFOX in porcine lungs during pre-clinical IVLP and intravenous(IV)trials.The concomitant extraction of other endogenous and exogenous small molecules from the lung and their detection via liquid chromatography coupled to high resolution mass spectrometry(LC-HRMS)enabled an assessment of FOLFOX's impact on the metabolomic profile of the lung and revealed the metabolic pathways associated with the route of administration(IVLP vs.IV)and the therapy itself.This study also shows that the immediate instrumental analysis of metabolomic samples is ideal,as long-term storage at80℃ results in changes in the metabolite content in the sample extracts.
基金the Natural Sciences and Engineering Research Council of Canada Industrial Research Chairs (NSERC IRC) and the Canada Research Chairs (CRC) for financial support of the project
文摘A metabolic profile of plasma samples from patients undergoing heart surgery with the use of cardiopulmonary bypass (CPB) and concurrent administration of tranexamic acid was determined. Direct immersion solid phase microextraction (DI-SPME), a new sampling and sample preparation tool for metabolomics, was used in this study for the first time to investigate clinical samples. The results showed alteration of diverse compounds involved in different biochemical pathways. The most significant contribution in changes induced by surgery and applied pharmacotherapy was noticed in metabolic profile of lysophospholipids, triacylglycerols, mediators of platelet aggregation, and linoleic acid metabolites. Two cases of individual response to treatment were also reported.
基金the Canadian Institute of Health Research(CIHR)-Natural Sciences and Engineering Research Council(NSERC)of the Canada Collaborative Health Research Projects program for their financial support(Grant No.:355935)the Natural Sciences and Engineering Research Council of Canada Industrial Research Chair(IRC)program.
文摘Normothermic ex vivo lung perfusion(NEVLP)has emerged as a modernized organ preservation technique that allows for detailed assessment of donor lung function prior to transplantation.The main goal of this study was to identify potential biomarkers of lung function and/or injury during a prolonged(19 h)NEVLP procedure using in vivo solid-phase microextraction(SPME)technology followed by liquid chromatography-high resolution mass spectrometry(LC-HRMS).The use of minimally invasive in vivo SPME fibers for repeated sampling of biological tissue permits the monitoring and evaluation of biochemical changes and alterations in the metabolomic profile of the lung.These in vivo SPME fibers were directly introduced into the lung and were also used to extract metabolites(on-site SPME)from fresh perfusate samples collected alongside lung samplings.A subsequent goal of the study was to assess the feasibility of SPME as an in vivo method in metabolomics studies,in comparison to the traditional inlab metabolomics workflow.Several upregulated biochemical pathways involved in pro-and antiinflammatory responses,as well as lipid metabolism,were observed during extended lung perfusion,especially between the 11th and 12th hours of the procedure,in both lung and perfusate samples.However,several unstable and/or short-lived metabolites,such as neuroprostanes,have been extracted from lung tissue in vivo using SPME fibers.On-site monitoring of the metabolomic profiles of both lung tissues through in vivo SPME and perfusate samples on site throughout the prolonged NEVLP procedure can be effectively performed using in vivo SPME technology.
基金the National Science Centre,Poland(Grant No.:2020/04/X/NZ9/01281).
文摘The direct coupling of solid-phase microextraction(SPME)to mass spectrometry(MS)(SPME-MS)has proven to be an effective method for the fast screening and quantitative analysis of compounds in complex matrices such as blood and plasma.In recent years,our lab has developed three novel SPME-MS techniques:SPME-microfluidic open interface-MS(SPME-MOI-MS),coated blade spray-MS(CBS-MS),and SPME-probe electrospray ionization-MS(SPME-PESI-MS).The fast and high-throughput nature of these SPME-MS technologies makes them attractive options for point-of-care analysis and anti-doping testing.However,all these three techniques utilize different SPME geometries and were tested with different MS instruments.Lack of comparative data makes it difficult to determine which of these methodologies is the best option for any given application.This work fills this gap by making a comprehensive comparison of these three technologies with different SPME devices including SPME fibers,CBS blades,and SPME-PESI probes and SPME-liquid chromatography-MS(SPME-LC-MS)for the analysis of drugs of abuse using the same MS instrument.Furthermore,for the first time,we developed different desorption chambers for MOI-MS for coupling with SPME fibers,CBS blades,and SPME-PESI probes,thus illustrating the universality of this approach.In total,eight analytical methods were developed,with the experimental data showing that all the SPME-based methods provided good analytical performance with R^(2)of linearities larger than 0.9925,accuracies between 81%and 118%,and good precision with an RSD%≤13%.
基金supported by Shimadzu Scientific Instruments(Columbia,MD,USA)and Canada’s National Science and Engineering Research Council-Industrial Research Chair(NSERC-IRC)program,grant number IRCPJ 184412-15
文摘The solid-phase microextraction technique quantifies analytes without considerably affecting the sample composition.Herein,a proof-of-concept study was conducted to demonstrate the use of coated probe electrospray ionization(coated-PESI)and coated blade spray(CBS)as ambient mass spectrometry approaches for monitoring drug biotransformation.The ability of these methods was investigated for monitoring the dephosphorylation of a prodrug,combretastatin A4 phosphate(CA4P),into its active form,combretastatin A4(CA4),in a cell culture medium supplemented with fetal bovine serum.The CBS spot analysis was modified to achieve the same extraction efficiency as protein precipitation and obtained results in 7 min.Because coated-PESI performs extraction without consuming any samples,it is the preferred technique in the case of a limited sample volume.Although coated-PESI only extracts small quantities of analytes,it uses the desorption solvent volume of 5-10 pL,resulting in high sensitivity,thus allowing the detection of compounds after only 1 min of extraction.The biotransformation of CA4P into CA4 via phosphatases occurs within the simple matrix,and the proposed sample preparation techniques are suitable for monitoring the biotransformation.
基金funded by the National Key Research and Development Program of China(2020YFC1807000)the Strategic Priority Research Program of the Chinese Academy of Sciences(no.XDA28030501)+9 种基金the National Natural Science Foundation of China(41991333,41977137,42090060)the International Atomic Energy Agency Research Project(D15022)the Youth Innovation Promotion Association of Chinese Academy of Sciences(2011225[Fang Wang],Y201859[H.Wang],2013201[J.Su],2021309[Y.Song],Y2022084[M.Ye])Chinese Academy of Sciences President’s International Fellowship Initiative(2020DC0005,2022DC0001,2024DC0009)the Institute of Soil Science,Chinese Academy of Sciences(ISSAS2419)the Research Group Linkage project from Alexander von Humboldt foundation,the Center for Health Impacts of Agriculture(CHIA)of Michigan State University,and the URI STEEP Superfund Center(grant#P42ES027706)Fang Wang was partly supported by the fellowship of Alexander von Humboldt for experienced researchers,and Shennong Young Talents of the Ministry of Agriculture and Rural Affairs,China(SNYCQN006-2022)J.P.and T.R.S.were supported by the Canada Research Chair program.B.W.B.was supported by a Royal Society of New Zealand Catalyst International Leaders fellowship.K.K.B.was supported by Innovation Fund Denmark and the European Commission Horizon 2020 financed under the ERA-NET Aquatic Pollutants Joint Transnational Call(REWA,GA no.869178)S.A.H.was partly supported by a grant from the National Institute of Environmental Health Sciences,National Institutes of Health grant number P42ES04911-29(Project 4)T.R.S.thanks CESAM by FCT/MCTES(UIDP/50017/2020+UIDB/50017/2020+LA/P/0094/2020)。
文摘Environmental pollution is escalating due to rapid global development that often prioritizes human needs over planetary health.Despite global efforts to mitigate legacy pollutants,the continuous introduction of new substances remains a major threat to both people and the planet.In response,global initiatives are focusing on risk assessment and regulation of emerging contaminants,as demonstrated by the ongoing efforts to establish the UN’s Intergovernmental Science-Policy Panel on Chemicals,Waste,and Pollution Prevention.This review identifies the sources and impacts of emerging contaminants on planetary health,emphasizing the importance of adopting a One Health approach.Strategies for monitoring and addressing these pollutants are discussed,underscoring the need for robust and socially equitable environmental policies at both regional and international levels.Urgent actions are needed to transition toward sustainable pollution management practices to safeguard our planet for future generations.