Recent decades have seen a substantial increase in interest in research on natural fibres that is aligned with sustainable development goals(SDGs).Due to their renewable resources and biodegradability,natural fiberrei...Recent decades have seen a substantial increase in interest in research on natural fibres that is aligned with sustainable development goals(SDGs).Due to their renewable resources and biodegradability,natural fiberreinforced composites have been investigated as a sustainable alternative to synthetic materials to reduce the usage of hazardous waste and environmental pollution.Among the natural fibre,jute fibre obtained from a bast plant has an increasing trend in the application,especially as a reinforcement material.Numerous research works have been performed on jute fibre with regard to reinforced thermoset and thermoplastic composites.Nevertheless,current demands on sustainable materials have required new developments in thermoplastic composites.In this paper,the author reviews jute plants as reinforcement materials for thermoplastic matrix polymers.This review provides an overview of the sustainability of jute plants as reinforcement material for thermoplastic matrix polymers.The overview on jute based thermoplastic composites focused on the thermal behavior and mechanical properties.Apart from physical,chemical,and mechanical properties,the study also covers the current and perspectives for future research challenges faced by the researchers on jute fibre reinforced thermoplastic composites.展开更多
Hydroxyapatite(HA)is a bio ceramic commonly utilized in bone tissue engineering due to its bioactive and osteoconductive properties.Crab shells are usually disregarded as waste material despite their significant CaCO_...Hydroxyapatite(HA)is a bio ceramic commonly utilized in bone tissue engineering due to its bioactive and osteoconductive properties.Crab shells are usually disregarded as waste material despite their significant CaCO_(3) content,and have not been widely utilized in the synthesis of HA.This study aims to synthesize and analyze HA derived from crab shells using the hydrothermal method with different durations of holding time.This study utilized precipitated calcium carbonate(PCC)derived from crab shells.With a hydrothermal reactor set at 160℃ and varying holding times of 14(HA_14),16(HA_16),and 18(HA_18)h,a PCC and(NH4)2HPO4 mixture was used to synthesize HA.The synthesis results were analyzed using scanning electron microscopy(SEM),fourier transform infrared spectroscopy(FTIR),and X-ray diffraction(XRD)tests.This study has accomplished the synthesis of HA from crab shells.Nonetheless,the final product of synthesis still contained CaCO_(3) as an impurity.The prolonged hydrothermal holding time of 14 to 18 h resulted in a reduction of impurities while increasing the percentage of crystal weight and crystallite size of HA.Specimen CH_18 is the best-quality product generated in this study.This specimen produced HA with the highest percentage of crystal weight and crystallite size compared to the other specimens.Furthermore,specimen CH_18 exhibited the lowest concentration of impurities.The Ca/P ratio in this specimen was also the closest to 1.67.The Ca/P ratio,crystallite size,and crystal weight percentage of this specimen are 1.54,19.06 nm,and 99.1%,respectively.展开更多
文摘Recent decades have seen a substantial increase in interest in research on natural fibres that is aligned with sustainable development goals(SDGs).Due to their renewable resources and biodegradability,natural fiberreinforced composites have been investigated as a sustainable alternative to synthetic materials to reduce the usage of hazardous waste and environmental pollution.Among the natural fibre,jute fibre obtained from a bast plant has an increasing trend in the application,especially as a reinforcement material.Numerous research works have been performed on jute fibre with regard to reinforced thermoset and thermoplastic composites.Nevertheless,current demands on sustainable materials have required new developments in thermoplastic composites.In this paper,the author reviews jute plants as reinforcement materials for thermoplastic matrix polymers.This review provides an overview of the sustainability of jute plants as reinforcement material for thermoplastic matrix polymers.The overview on jute based thermoplastic composites focused on the thermal behavior and mechanical properties.Apart from physical,chemical,and mechanical properties,the study also covers the current and perspectives for future research challenges faced by the researchers on jute fibre reinforced thermoplastic composites.
基金funded the World Class Research(WCR)Grant of Universitas Diponegoro with Contract Number 357-36/UN7.D2/PP/IV/2024.
文摘Hydroxyapatite(HA)is a bio ceramic commonly utilized in bone tissue engineering due to its bioactive and osteoconductive properties.Crab shells are usually disregarded as waste material despite their significant CaCO_(3) content,and have not been widely utilized in the synthesis of HA.This study aims to synthesize and analyze HA derived from crab shells using the hydrothermal method with different durations of holding time.This study utilized precipitated calcium carbonate(PCC)derived from crab shells.With a hydrothermal reactor set at 160℃ and varying holding times of 14(HA_14),16(HA_16),and 18(HA_18)h,a PCC and(NH4)2HPO4 mixture was used to synthesize HA.The synthesis results were analyzed using scanning electron microscopy(SEM),fourier transform infrared spectroscopy(FTIR),and X-ray diffraction(XRD)tests.This study has accomplished the synthesis of HA from crab shells.Nonetheless,the final product of synthesis still contained CaCO_(3) as an impurity.The prolonged hydrothermal holding time of 14 to 18 h resulted in a reduction of impurities while increasing the percentage of crystal weight and crystallite size of HA.Specimen CH_18 is the best-quality product generated in this study.This specimen produced HA with the highest percentage of crystal weight and crystallite size compared to the other specimens.Furthermore,specimen CH_18 exhibited the lowest concentration of impurities.The Ca/P ratio in this specimen was also the closest to 1.67.The Ca/P ratio,crystallite size,and crystal weight percentage of this specimen are 1.54,19.06 nm,and 99.1%,respectively.