For the requirement of safe and stable operation,the combined sealing structure was used for reciprocating motion in the deep sea high-pressure environment,and the effects of different seawater depths and shaft moveme...For the requirement of safe and stable operation,the combined sealing structure was used for reciprocating motion in the deep sea high-pressure environment,and the effects of different seawater depths and shaft movement speed on the sealing performance of the combined sealing structure were studied.The change rule of the sealing performance of the combined sealing structure of reciprocating motion under different working conditions is proved.The study shows that in the combined sealing structure of reciprocating movement,the Von Mises stress and the contact stress of the O-ring varies with the direction of the shaft movement.The Von Mises stress and contact stress of the O-ring,the Von Mises stress and the contact stress on each sealing lip of the slip ring gradually increase with the increasing of seawater depths.At the same time,the Von Mises stress of the O-ring which in the process of the shaft upward movement is greater than the shaft downward movement,making the shaft upward movement more likely to cause the O-ring relaxation and fatigue.The shaft movement speed has no significant influence on the Von Mises stress and contact stress of the O-ring.The research results provide theoretical guidance and technical support for the selection and optimization of the geometrical parameters of the combined sealing structure in the deep-sea high-pressure environment.展开更多
A launch and recovery system for a seafloor drill was studied using a dynamic model that considered the influences of seawater resistance and the elastic deformation of the cable based on the lumped mass method.The in...A launch and recovery system for a seafloor drill was studied using a dynamic model that considered the influences of seawater resistance and the elastic deformation of the cable based on the lumped mass method.The influence of wave direction angle on heave,roll,and pitch motions of the ship was analyzed,and those motion characteristics were then used to assess the tension response of the armored umbilical cable at the lifting point under different wave direction angles.By analyzing the different wave direction angles we found that,when a ship experiences longitudinal waves it will express longitudinal movement.When a ship encounters transverse waves,it will have transverse movement.Under oblique waves from bow or stern,a ship will have both longitudinal and transverse movement,exhibiting obvious heave and pitch movements.Oblique waves,in this study,produced the most obvious impact on armored umbilical cable tension.However,the tension of the armored umbilical cable will change based on the weight of the armored umbilical cable and the seafloor drill in the water.This analysis has provided a useful reference for the study of heave compensation and the constant tension automatic control.展开更多
基金supported by the National Natural Science Foundation of China (Grant No.51705145, 51779092)the National Key Research and Development Program of China (Grant No.2016YFC0300502 and No.2017YFC0307501)+1 种基金Natural Science Foundation of Hunan Province of China (Grant No.2019JJ50182)Research Foundation of Education Bureau of Hunan Province (Grant No.18B205)
文摘For the requirement of safe and stable operation,the combined sealing structure was used for reciprocating motion in the deep sea high-pressure environment,and the effects of different seawater depths and shaft movement speed on the sealing performance of the combined sealing structure were studied.The change rule of the sealing performance of the combined sealing structure of reciprocating motion under different working conditions is proved.The study shows that in the combined sealing structure of reciprocating movement,the Von Mises stress and the contact stress of the O-ring varies with the direction of the shaft movement.The Von Mises stress and contact stress of the O-ring,the Von Mises stress and the contact stress on each sealing lip of the slip ring gradually increase with the increasing of seawater depths.At the same time,the Von Mises stress of the O-ring which in the process of the shaft upward movement is greater than the shaft downward movement,making the shaft upward movement more likely to cause the O-ring relaxation and fatigue.The shaft movement speed has no significant influence on the Von Mises stress and contact stress of the O-ring.The research results provide theoretical guidance and technical support for the selection and optimization of the geometrical parameters of the combined sealing structure in the deep-sea high-pressure environment.
基金financially supported by the National Natural Science Foundation of China (Grant Nos. 51705145 and 51779092)the special funding support for the construction of innovative provinces in Hunan Province (Grant Nos. 2020GK1021, 2019SK2271, and 2019GK1012)
文摘A launch and recovery system for a seafloor drill was studied using a dynamic model that considered the influences of seawater resistance and the elastic deformation of the cable based on the lumped mass method.The influence of wave direction angle on heave,roll,and pitch motions of the ship was analyzed,and those motion characteristics were then used to assess the tension response of the armored umbilical cable at the lifting point under different wave direction angles.By analyzing the different wave direction angles we found that,when a ship experiences longitudinal waves it will express longitudinal movement.When a ship encounters transverse waves,it will have transverse movement.Under oblique waves from bow or stern,a ship will have both longitudinal and transverse movement,exhibiting obvious heave and pitch movements.Oblique waves,in this study,produced the most obvious impact on armored umbilical cable tension.However,the tension of the armored umbilical cable will change based on the weight of the armored umbilical cable and the seafloor drill in the water.This analysis has provided a useful reference for the study of heave compensation and the constant tension automatic control.