The present study investigates the kinetics of hydrogen sulfide (H2S) decomposition into hydrogen and sulfur carded out in a nonthermal plasma dielectric barrier discharge (NTP-DBD) reactor operated at ,-430 K for...The present study investigates the kinetics of hydrogen sulfide (H2S) decomposition into hydrogen and sulfur carded out in a nonthermal plasma dielectric barrier discharge (NTP-DBD) reactor operated at ,-430 K for in situ removal of sulfur condensed inside the reactor walls. The dissociation of H2S was primarily initiated by the excitation of carder gas (At) through electron collisions which appeared to be the rate determining step. The experiments were carded out with initial concentration of H2S varied between 5 and 25 vol% at 150 mL/min (at standard temperature and pressure) flow rate in the input power range of 0.5 to 2 W. The reaction rate model based on continuous stirred tank reactor (CSTR) model failed to explain the global kinetics of H2S decomposition, probably due to the multiple complex reactions involved in H2S decomposition, whereas Michaelis-Menten model was satisfactory. Typical results indicated that the reaction order approached zero with increasing inlet concentration.展开更多
Oxidative decomposition of dilute nitrobenzene in air was carried out in a catalytic plasma reactor with an inner electrode made of sintered metal fibres(SMF)that also acted as catalyst.The parameters of the concentra...Oxidative decomposition of dilute nitrobenzene in air was carried out in a catalytic plasma reactor with an inner electrode made of sintered metal fibres(SMF)that also acted as catalyst.The parameters of the concentration,specific input energy,and gas residence time were optimized.The modification of the SMF inner electrode with transition metal oxides like MnOx and CoOx oxides promoted complete oxidation,especially at low input energy.CoOx/SMF showed higher activity than MnOx/SMF and SMF,and could oxidise completely 100 ppm of nitrobenzene at 300 J/L.展开更多
基金the Ministry of New and Renewable Energy(MNRE)-New Delhi,for financial support(Reference No. 103/117/2008-NT)
文摘The present study investigates the kinetics of hydrogen sulfide (H2S) decomposition into hydrogen and sulfur carded out in a nonthermal plasma dielectric barrier discharge (NTP-DBD) reactor operated at ,-430 K for in situ removal of sulfur condensed inside the reactor walls. The dissociation of H2S was primarily initiated by the excitation of carder gas (At) through electron collisions which appeared to be the rate determining step. The experiments were carded out with initial concentration of H2S varied between 5 and 25 vol% at 150 mL/min (at standard temperature and pressure) flow rate in the input power range of 0.5 to 2 W. The reaction rate model based on continuous stirred tank reactor (CSTR) model failed to explain the global kinetics of H2S decomposition, probably due to the multiple complex reactions involved in H2S decomposition, whereas Michaelis-Menten model was satisfactory. Typical results indicated that the reaction order approached zero with increasing inlet concentration.
基金DST India for financial support under the SERC scheme
文摘Oxidative decomposition of dilute nitrobenzene in air was carried out in a catalytic plasma reactor with an inner electrode made of sintered metal fibres(SMF)that also acted as catalyst.The parameters of the concentration,specific input energy,and gas residence time were optimized.The modification of the SMF inner electrode with transition metal oxides like MnOx and CoOx oxides promoted complete oxidation,especially at low input energy.CoOx/SMF showed higher activity than MnOx/SMF and SMF,and could oxidise completely 100 ppm of nitrobenzene at 300 J/L.