期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Blind Spot Obstacle Detection from Monocular Camera Images with Depth Cues Extracted by CNN 被引量:2
1
作者 Yuxiang Guo itsuo kumazawa Chuyo Kaku 《Automotive Innovation》 EI 2018年第4期362-373,共12页
The images from a monocular camera can be processed to detect depth information regarding obstacles in the blind spot area captured by the side-view camera of a vehicle.The depth information is given as a classificati... The images from a monocular camera can be processed to detect depth information regarding obstacles in the blind spot area captured by the side-view camera of a vehicle.The depth information is given as a classification result“near”or“far”when two blocks in the image are compared with respect to their distances and the depth information can be used for the purpose of blind spot area detection.In this paper,the proposed depth information is inferred from a combination of blur cues and texture cues.The depth information is estimated by comparing the features of two image blocks selected within a single image.A preliminary experiment demonstrates that a convolutional neural network(CNN)model trained by deep learning with a set of relatively ideal images achieves good accuracy.The same CNN model is applied to distinguish near and far obstacles according to a specified threshold in the vehicle blind spot area,and the promising results are obtained.The proposed method uses a standard blind spot camera and can improve safety without other additional sensing devices.Thus,the proposed approach has the potential to be applied in vehicular applications for the detection of objects in the driver’s blind spot. 展开更多
关键词 Coarse-to-fine analysis Convolutional neural network Blind spot detection Principal component analysis Discrete cosine transformation
原文传递
Scale variant vehicle object recognition by CNN module of multipooling- PCA process
2
作者 Yuxiang Guo itsuo kumazawa Chuyo Kaku 《Journal of Intelligent and Connected Vehicles》 EI 2023年第4期227-236,共10页
The moving vehicles present different scales in the image due to the perspective effect of different viewpoint distances.The premise of advanced driver assistance system(ADAS)system for safety surveillance and safe dr... The moving vehicles present different scales in the image due to the perspective effect of different viewpoint distances.The premise of advanced driver assistance system(ADAS)system for safety surveillance and safe driving is early identification of vehicle targets in front of the ego vehicle.The recognition of the same vehicle at different scales requires feature learning with scale invariance.Unlike existing feature vector methods,the normalized PCA eigenvalues calculated from feature maps are used to extract scale-invariant features.This study proposed a convolutional neural network(CNN)structure embedded with the module of multi-pooling-PCA for scale variant object recognition.The validation of the proposed network structure is verified by scale variant vehicle image dataset.Compared with scale invariant network algorithms of Scale-invariant feature transform(SIFT)and FSAF as well as miscellaneous networks,the proposed network can achieve the best recognition accuracy tested by the vehicle scale variant dataset.To testify the practicality of this modified network,the testing of public dataset ImageNet is done and the comparable results proved its effectiveness in general purpose of applications. 展开更多
关键词 object detection scale invariance spatial pyramid pooling multi-pooling convolutional neural network(CNN)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部