An advanced precooled airbreathing engine with a closed Brayton cycle is a promising solution for high-speed propulsion,of which the Synergetic Air Breathing Rocket Engine(SABRE)is a representative configuration.The p...An advanced precooled airbreathing engine with a closed Brayton cycle is a promising solution for high-speed propulsion,of which the Synergetic Air Breathing Rocket Engine(SABRE)is a representative configuration.The performance of the latest SABRE-4 cycle was analyzed in this paper.Firstly,a relatively complete engine performance model that considers the characteristics of turbomachinery and heat exchangers was developed.Then,Sobol’global sensitivity analysis of key performance parameters was carried out to identify the most influential design variables.Optimal specific impulses under different target specific thrusts were obtained by particle swarm optimization,of which the thermodynamic parameters corresponding to a specific thrust of 1.12 kN·s·kg^(-1)and a specific impulse of 3163 s were chosen as the design values.Four different control laws were analyzed in contrast,and the charge control method had the strongest ability of thrust regulation as well as maintaining a favorable specific impulse performance.Finally,working characteristics under the charge control and over a typical flight envelope were calculated,in which the average value of the maximum specific impulse was as high as 5315 s.This study would help to deepen the understanding of SABRE-4 thermodynamic characteristics and other precooled airbreathing engine cycles with similar layouts.展开更多
The Hypersonic Precooled Combined Cycle Engine(HPCCE), which introduces precooler into traditional hypersonic engine, is regarded as the most promising propulsion system for realizing a single-stage-to-orbit vehicle. ...The Hypersonic Precooled Combined Cycle Engine(HPCCE), which introduces precooler into traditional hypersonic engine, is regarded as the most promising propulsion system for realizing a single-stage-to-orbit vehicle. The unique demands lead to the application of the compact heat exchangers, which can realize high thrust-to-weight ratio, sufficient specific impulse and high compression ratio. However, it is challenging to accurately manufacture the compact heat exchanger due to its extremely high heat dissipation capacity, remarkable compactness, superior adaptability and harsh operating condition. This review summarizes the precooling schemes of combined cycle propulsions and describes the demands and key issues in the fabrication of a compact heat exchanger for HPCCE. The investigation focuses on the application of various micromanufacturing methods of heat exchangers constructed from tubes of less than 1 mm in diameter and microchannels of less than 200 micrometers. Various micromanufacturing processes, which include microforming, micromachining, stereolithography, chemical etching, 3 D printing, joining and other advanced microfabricating processes, were reviewed. In addition, the technologies are compared in terms of dimensional tolerance, material compatibility, and process applicability. Furthermore, the boundaries of the micromanufacturing constraints are specified as references for the design of compact heat exchangers. Ultimately, the technological difficulties and development trends are discussed for the fabrication of compact heat exchangers for HPCCE.展开更多
Generally speaking, main flow path of gas turbine is assumed to be perfect for standard 3D computation. But in real engine, the turbine annulus geometry is not completely smooth for the presence of the shroud and asso...Generally speaking, main flow path of gas turbine is assumed to be perfect for standard 3D computation. But in real engine, the turbine annulus geometry is not completely smooth for the presence of the shroud and associated cavity near the end wall. Besides, shroud leakage flow is one of the dominant sources of secondary flow in tur- bomachinery, which not only causes a deterioration of useful work but also a penalty on turbine efficiency. It has been found that neglect shroud leakage flow makes the computed velocity profiles and loss distribution signifi- cantly different to those measured. Even so, the influence of shroud leakage flow is seldom taken into considera- tion during the routine of turbine design due to insufficient understanding of its impact on end wall flows and tur- bine performance. In order to evaluate the impact of tip shroud geometry on turbine performance, a 3D computa- tional investigation for 1.5-stage turbine with shrouded blades was performed in this paper. The following ge- ometry parameters were varied respectively:展开更多
A wave rotor is suitable for compact and efficient pressure-exchange between gas flows.This work measured the circumferential pressure distribution of the rotor/stator interfaces and utilized a CFD method to simulate ...A wave rotor is suitable for compact and efficient pressure-exchange between gas flows.This work measured the circumferential pressure distribution of the rotor/stator interfaces and utilized a CFD method to simulate the unsteady pressure waves.The experimental and CFD results showed some slopes in the circumferential pressure distributions,and the slopes indicated the traces of specific unsteady pressure waves.Such traces varied regularly if the rotational speed varied within a range from-11%to+11%off the baseline value,but they were seriously disturbed if the rotational speed varied by-45%from the baseline value.It verified that a pressure wave in a wave rotor tended to keep its pressure ratio and propagation velocity unchanged if the rotational speed varied by a small extent,and that the pressure wave could not keep its propagation patterns if the rotational speed varied by a large extent.Because of the pressure wave behaviors,the wave rotor demonstrated specific regulations of the rotational speed effects on its operational states.展开更多
It is one of the most efficient ways to greatly improve aero-engines' performance by utilizing vaneless counterrotating turbine(VCRT) technology.To supply sufficient power,VCRT turns to be high Mach number,large f...It is one of the most efficient ways to greatly improve aero-engines' performance by utilizing vaneless counterrotating turbine(VCRT) technology.To supply sufficient power,VCRT turns to be high Mach number,large flow angle at high-pressure turbine(HPT) rotor exit,and low blade camber angle,which increase difficulties to turbine design.As the axial velocity ratio of HPT rotor is much larger than the conventional ones,the optimal selection of VCRT velocity triangles based on theoretical analysis is developed,and how the efficiency varied by HPT stator/rotor exit flow angle is also figured out.The key points to design a high efficient practicable VCRT are to select velocity triangles that are characterized by low flow coefficient,high outlet flow angle and large axial velocity ratio of HPT rotor.Meanwhile,performance comparison between convergent blade and convergent-divergent blade shows the latter is more appropriate for VCRT.展开更多
The assembling error may lead to variation in stagger angles,which would affect the aerodynamic performance of the turbine.To investigate this underlying effect,two parallel numerical experiments on two turbines with ...The assembling error may lead to variation in stagger angles,which would affect the aerodynamic performance of the turbine.To investigate this underlying effect,two parallel numerical experiments on two turbines with the same profile,but uniform and nonuniform vane stagger angle respectively,were conducted in both steady and unsteady methods.The results indicate that certain changes in the detailed flow field of the turbine occur when the stagger angles are nonuniform,further,the blade loading distribution of the vane and rotor become markedly different from that in uniform vane stagger angle situation.Then these consequences caused by nonuniformity mentioned above enhance the unsteadiness of the flow,finally,the aerodynamic performance changes dramatically.It also shows that,compared with steady simulation,the unsteady numerical simulation is necessary in this investigation.展开更多
基金supported by the Project of National Key Laboratory of Science and Technology on Aero-engine and Aerothermodynamics at Beihang University,China(No.2022-JCJQ-LB-062-0204).
文摘An advanced precooled airbreathing engine with a closed Brayton cycle is a promising solution for high-speed propulsion,of which the Synergetic Air Breathing Rocket Engine(SABRE)is a representative configuration.The performance of the latest SABRE-4 cycle was analyzed in this paper.Firstly,a relatively complete engine performance model that considers the characteristics of turbomachinery and heat exchangers was developed.Then,Sobol’global sensitivity analysis of key performance parameters was carried out to identify the most influential design variables.Optimal specific impulses under different target specific thrusts were obtained by particle swarm optimization,of which the thermodynamic parameters corresponding to a specific thrust of 1.12 kN·s·kg^(-1)and a specific impulse of 3163 s were chosen as the design values.Four different control laws were analyzed in contrast,and the charge control method had the strongest ability of thrust regulation as well as maintaining a favorable specific impulse performance.Finally,working characteristics under the charge control and over a typical flight envelope were calculated,in which the average value of the maximum specific impulse was as high as 5315 s.This study would help to deepen the understanding of SABRE-4 thermodynamic characteristics and other precooled airbreathing engine cycles with similar layouts.
基金the funding support to this research from the National Natural Science Foundation of China (Nos. 51635005, 51975031 and 51605018)Defense Industrial Technology Development Program of China (No.JCKY2018601C207)。
文摘The Hypersonic Precooled Combined Cycle Engine(HPCCE), which introduces precooler into traditional hypersonic engine, is regarded as the most promising propulsion system for realizing a single-stage-to-orbit vehicle. The unique demands lead to the application of the compact heat exchangers, which can realize high thrust-to-weight ratio, sufficient specific impulse and high compression ratio. However, it is challenging to accurately manufacture the compact heat exchanger due to its extremely high heat dissipation capacity, remarkable compactness, superior adaptability and harsh operating condition. This review summarizes the precooling schemes of combined cycle propulsions and describes the demands and key issues in the fabrication of a compact heat exchanger for HPCCE. The investigation focuses on the application of various micromanufacturing methods of heat exchangers constructed from tubes of less than 1 mm in diameter and microchannels of less than 200 micrometers. Various micromanufacturing processes, which include microforming, micromachining, stereolithography, chemical etching, 3 D printing, joining and other advanced microfabricating processes, were reviewed. In addition, the technologies are compared in terms of dimensional tolerance, material compatibility, and process applicability. Furthermore, the boundaries of the micromanufacturing constraints are specified as references for the design of compact heat exchangers. Ultimately, the technological difficulties and development trends are discussed for the fabrication of compact heat exchangers for HPCCE.
基金Financial support from the Innovation Foundation of BUAA for PhD Graduates(YWF-13-A01-014)
文摘Generally speaking, main flow path of gas turbine is assumed to be perfect for standard 3D computation. But in real engine, the turbine annulus geometry is not completely smooth for the presence of the shroud and associated cavity near the end wall. Besides, shroud leakage flow is one of the dominant sources of secondary flow in tur- bomachinery, which not only causes a deterioration of useful work but also a penalty on turbine efficiency. It has been found that neglect shroud leakage flow makes the computed velocity profiles and loss distribution signifi- cantly different to those measured. Even so, the influence of shroud leakage flow is seldom taken into considera- tion during the routine of turbine design due to insufficient understanding of its impact on end wall flows and tur- bine performance. In order to evaluate the impact of tip shroud geometry on turbine performance, a 3D computa- tional investigation for 1.5-stage turbine with shrouded blades was performed in this paper. The following ge- ometry parameters were varied respectively:
基金co-supported by the National Natural Science Foundation of China(No.51906007)the National Key Laboratory Foundation of China(No.6142702190204)。
文摘A wave rotor is suitable for compact and efficient pressure-exchange between gas flows.This work measured the circumferential pressure distribution of the rotor/stator interfaces and utilized a CFD method to simulate the unsteady pressure waves.The experimental and CFD results showed some slopes in the circumferential pressure distributions,and the slopes indicated the traces of specific unsteady pressure waves.Such traces varied regularly if the rotational speed varied within a range from-11%to+11%off the baseline value,but they were seriously disturbed if the rotational speed varied by-45%from the baseline value.It verified that a pressure wave in a wave rotor tended to keep its pressure ratio and propagation velocity unchanged if the rotational speed varied by a small extent,and that the pressure wave could not keep its propagation patterns if the rotational speed varied by a large extent.Because of the pressure wave behaviors,the wave rotor demonstrated specific regulations of the rotational speed effects on its operational states.
基金carried out under contract for the National Natural Science Foundation of China as part of the Free Application Project (No. 50776003)
文摘It is one of the most efficient ways to greatly improve aero-engines' performance by utilizing vaneless counterrotating turbine(VCRT) technology.To supply sufficient power,VCRT turns to be high Mach number,large flow angle at high-pressure turbine(HPT) rotor exit,and low blade camber angle,which increase difficulties to turbine design.As the axial velocity ratio of HPT rotor is much larger than the conventional ones,the optimal selection of VCRT velocity triangles based on theoretical analysis is developed,and how the efficiency varied by HPT stator/rotor exit flow angle is also figured out.The key points to design a high efficient practicable VCRT are to select velocity triangles that are characterized by low flow coefficient,high outlet flow angle and large axial velocity ratio of HPT rotor.Meanwhile,performance comparison between convergent blade and convergent-divergent blade shows the latter is more appropriate for VCRT.
基金supported by National Nature Science Foundation of China under Grant Number 50776003the Innovation Foundation of BUAA for PhD Graduates
文摘The assembling error may lead to variation in stagger angles,which would affect the aerodynamic performance of the turbine.To investigate this underlying effect,two parallel numerical experiments on two turbines with the same profile,but uniform and nonuniform vane stagger angle respectively,were conducted in both steady and unsteady methods.The results indicate that certain changes in the detailed flow field of the turbine occur when the stagger angles are nonuniform,further,the blade loading distribution of the vane and rotor become markedly different from that in uniform vane stagger angle situation.Then these consequences caused by nonuniformity mentioned above enhance the unsteadiness of the flow,finally,the aerodynamic performance changes dramatically.It also shows that,compared with steady simulation,the unsteady numerical simulation is necessary in this investigation.