A three-dimensional(3D)thermomechanical vibration model is developed for rotating pre-twisted functionally graded(FG)microbeams according to the refined shear deformation theory(RSDT)and the modified couple stress the...A three-dimensional(3D)thermomechanical vibration model is developed for rotating pre-twisted functionally graded(FG)microbeams according to the refined shear deformation theory(RSDT)and the modified couple stress theory(MCST).The material properties are assumed to follow a power-law distribution along the chordwise direction.The model introduces one axial stretching variable and four transverse deflection variables including two pure bending components and two pure shear ones.The complex modal analysis and assumed mode methods are used to solve the governing equations of motion under different boundary conditions(BCs).Several examples are presented to verify the effectiveness of the developed model.By coupling the slenderness ratio,gradient index,rotation speed,and size effect with the pre-twisted angle,the effects of these factors on the thermomechanical vibration of the microbeam with different BCs are investigated.It is found that with the increase in the pre-twisted angle,the critical slenderness ratio and gradient index corresponding to the thermal instability of the microbeam increase,while the critical material length scale parameter(MLSP)and rotation speed decrease.The sensitivity of the fundamental frequency to temperature increases with the increasing slenderness ratio and gradient index,and decreases with the other increasing parameters.Moreover,the size effect can suppress the dynamic stiffening effect and enhance the Coriolis effect.Finally,the mode transition is quantitatively demonstrated by a modal assurance criterion(MAC).展开更多
In this paper, multi-scale modeling for nanobeams with large deflection is conducted in the framework of the nonlocal strain gradient theory and the Euler-Bernoulli beam theory with exact bending curvature. The propos...In this paper, multi-scale modeling for nanobeams with large deflection is conducted in the framework of the nonlocal strain gradient theory and the Euler-Bernoulli beam theory with exact bending curvature. The proposed size-dependent nonlinear beam model incorporates structure-foundation interaction along with two small scale parameters which describe the stiffness-softening and stiffness-hardening size effects of nanomaterials, respectively. By applying Hamilton's principle, the motion equation and the associated boundary condition are derived. A two-step perturbation method is introduced to handle the deep postbuckling and nonlinear bending problems of nanobeams analytically. Afterwards, the influence of geometrical, material, and elastic foundation parameters on the nonlinear mechanical behaviors of nanobeams is discussed. Numerical results show that the stability and precision of the perturbation solutions can be guaranteed, and the two types of size effects become increasingly important as the slenderness ratio increases. Moreover, the in-plane conditions and the high-order nonlinear terms appearing in the bending curvature expression play an important role in the nonlinear behaviors of nanobeams as the maximum deflection increases.展开更多
In this study,the wave propagation properties of piezoelectric sandwich nanoplates deposited on an orthotropic viscoelastic foundation are analyzed by considering the surface effects(SEs).The nanoplates are composed o...In this study,the wave propagation properties of piezoelectric sandwich nanoplates deposited on an orthotropic viscoelastic foundation are analyzed by considering the surface effects(SEs).The nanoplates are composed of a composite layer reinforced by graphene and two piezoelectric surface layers.Utilizing the modified Halpin-Tsai model,the material parameters of composite layers are obtained.The displacement field is determined by the sinusoidal shear deformation theory(SSDT).The Euler-Lagrange equation is derived by employing Hamilton’s principle and the constitutive equations of piezoelectric layers considering the SEs.Subsequently,the nonlocal strain gradient theory(NSGT)is used to obtain the equations of motion.Next,the effects of scale parameters,graphene distribution,orthotropic viscoelastic foundation,and SEs on the propagation behavior are numerically examined.The results reveal that the wave frequency is a periodic function of the orthotropic angle.Furthermore,the wave frequency increases with the increase in the SEs.展开更多
Based on the nonlocal strain gradient theory(NSGT), a model is proposed for an axially moving nanobeam with two kinds of scale effects. The internal resonanceaccompanied fundamental harmonic response of the external e...Based on the nonlocal strain gradient theory(NSGT), a model is proposed for an axially moving nanobeam with two kinds of scale effects. The internal resonanceaccompanied fundamental harmonic response of the external excitation frequency in the vicinities of the first and second natural frequencies is studied by adopting the multivariate Lindstedt-Poincaré(L-P) method. Based on the root discriminant of the frequencyamplitude equation under internal resonance conditions, theoretical analyses are performed to investigate the scale effects of the resonance region and the critical external excitation amplitude. Numerical results show that the region of internal resonance is related to the amplitude of the external excitation. Particularly, the internal resonance disappears after a certain critical value of the external excitation amplitude is reached.It is also shown that the scale parameters, i.e., the nonlocal parameters and the material characteristic length parameters, respectively, reduce and increase the critical amplitude,leading to a promotion or suppression of the occurrence of internal resonance. In addition,the scale parameters affect the size of the enclosed loop of the bifurcated solution curves as well by changing their intersection, divergence, or tangency.展开更多
This study investigates the size-dependent wave propagation behaviors under the thermoelectric loads of porous functionally graded piezoelectric(FGP) nanoplates deposited in a viscoelastic foundation.It is assumed tha...This study investigates the size-dependent wave propagation behaviors under the thermoelectric loads of porous functionally graded piezoelectric(FGP) nanoplates deposited in a viscoelastic foundation.It is assumed that(i) the material parameters of the nanoplates obey a power-law variation in thickness and(ii) the uniform porosity exists in the nanoplates.The combined effects of viscoelasticity and shear deformation are considered by using the Kelvin-Voigt viscoelastic model and the refined higher-order shear deformation theory.The scale effects of the nanoplates are captured by employing nonlocal strain gradient theory(NSGT).The motion equations are calculated in accordance with Hamilton’s principle.Finally,the dispersion characteristics of the nanoplates are numerically determined by using a harmonic solution.The results indicate that the nonlocal parameters(NLPs) and length scale parameters(LSPs) have exactly the opposite effects on the wave frequency.In addition,it is found that the effect of porosity volume fractions(PVFs) on the wave frequency depends on the gradient indices and damping coefficients.When these two values are small,the wave frequency increases with the volume fraction.By contrast,at larger gradient index and damping coefficient values,the wave frequency decreases as the volume fraction increases.展开更多
This study examines the wave propagation characteristics for a bi-directional functional grading of barium titanate(BaTiO_(3)) and cobalt ferrite(CoFe_(2)O_(4)) porous nanoshells,the porosity distribution of which is ...This study examines the wave propagation characteristics for a bi-directional functional grading of barium titanate(BaTiO_(3)) and cobalt ferrite(CoFe_(2)O_(4)) porous nanoshells,the porosity distribution of which is simulated by the honeycomb-shaped symmetrical and asymmetrical distribution functions.The nonlocal strain gradient theory(NSGT) and first-order shear deformation theory are used to determine the size effect and shear deformation,respectively.Nonlocal governing equations are derived for the nanoshells by Hamilton's principle.The resulting dimensionless differential equations are solved by means of an analytical solution of the combined exponential function after dimensionless treatment.Finally,extensive parametric surveys are conducted to investigate the influence of diverse parameters,such as dimensionless scale parameters,radiusto-thickness ratios,bi-directional functionally graded(FG) indices,porosity coefficients,and dimensionless electromagnetic potentials on the wave propagation characteristics.Based on the analysis results,the effect of the dimensionless scale parameters on the dispersion relationship is found to be related to the ratio of the scale parameters.The wave propagation characteristics of nanoshells in the presence of a magnetoelectric field depend on the bi-directional FG indices.展开更多
This research develops an analytical approach to explore the wave propagation problem of piezoelectric sandwich nanoplates.The core of the sandwich nanoplates is a nanocomposite layer reinforced with graphene platelet...This research develops an analytical approach to explore the wave propagation problem of piezoelectric sandwich nanoplates.The core of the sandwich nanoplates is a nanocomposite layer reinforced with graphene platelets,which is integrated by two piezoelectric layers exposed to electric field.The material properties of nanocomposite layer are obtained by the Halpin–Tsai model and the rule of mixtures.The Euler–Lagrange equations of nanoplates are derived from Hamilton’s principle.By using the nonlocal strain gradient theory,the nonlocal governing equations are presented.Finally,numerical studies are conducted to demonstrate the influences of propagation angle,small-scale and external loads on wave frequency.The results reveal that the frequency changes periodically with the propagation angle and can be reduced by increasing voltage,temperature and the thickness of graphene platelets.展开更多
Αn analytical method is developed to explore the wave propagation characteristics of piezoelectric sandwich nanoplates in the present work.The sandwich nanoplates are composed of a graphene reinforced composite core ...Αn analytical method is developed to explore the wave propagation characteristics of piezoelectric sandwich nanoplates in the present work.The sandwich nanoplates are composed of a graphene reinforced composite core layer with two piezoelectric surface layers exposed to electric field.The material properties of the nanocomposite layer are given by the Halpin–Tsai model and mixture’s rule.The Euler–Lagrange equation of the nanoplates is obtained by Hamilton's principle and first-order shear deformation theory.Then,combining the high-order nonlocal strain gradient theory with the hygrothermal constitutive relationship of composite nanoplates,the nonlocal governing equations are presented.Finally,numerical studies are conducted to demonstrate the influences of scale parameters,applied external voltage,temperature variation,moisture variation,graphene size,and weight fraction on wave frequency.The results reveal that low-order and high-order nonlocal parameters and length scale parameters have different effects on wave frequency.The wave frequency can be reduced by increasing temperature and the thickness of graphene.This could facilitate the investigation of the dynamic properties of graphene nanocomposite structures.展开更多
This research explores the nonlinear bending behaviors of functionally graded carbon nanotube-reinforced(FG-CNTR)shallow arches with unmovable simply supported ends and clarnped-clamped ends;these arches are subjected...This research explores the nonlinear bending behaviors of functionally graded carbon nanotube-reinforced(FG-CNTR)shallow arches with unmovable simply supported ends and clarnped-clamped ends;these arches are subjected to a uniform radial pressure and rest on a nonlinear elastic foundation.The temperature-dependent material properties of the arches are considered.Within the framework of Reddy shear deformation theory possessing von Karman nonlinearity,the motion equations and boundary conditions for the FG-CNTR arches are determined by the Euler-Lagrange variational principle.Then,a two-step perturbation technique is adopted to determine the load-deflection relationship analytically.To verify the validity of the developed model and related perturbation solutions,a numerical investigation is conducted for shallow arches with five distribution patterns of carbon nanotube(CNT)reinforcements uniaxially aligned in the axial direction.Finally,the influences of various factors,including the elastic foundation,layout type,and volume fraction of CNTs and geometric factors,on the nonlinear behaviors of FG-CNTR shallow arches are examined.The obtained results show that the load deflection curves exhibit less snap-through instability as the CNT volume fraction increases.The transverse shear stress versus the thickness of FG-CNTR shallow arches is markedly affected by the layout type and content of reinforcements.展开更多
基金the National Natural Science Foundation of China(Nos.11602204 and 12102373)the Fundamental Research Funds for the Central Universities of China(Nos.2682022ZTPY081 and 2682022CX056)the Natural Science Foundation of Sichuan Province of China(Nos.2023NSFSC0849,2023NSFSC1300,2022NSFSC1938,and 2022NSFSC2003)。
文摘A three-dimensional(3D)thermomechanical vibration model is developed for rotating pre-twisted functionally graded(FG)microbeams according to the refined shear deformation theory(RSDT)and the modified couple stress theory(MCST).The material properties are assumed to follow a power-law distribution along the chordwise direction.The model introduces one axial stretching variable and four transverse deflection variables including two pure bending components and two pure shear ones.The complex modal analysis and assumed mode methods are used to solve the governing equations of motion under different boundary conditions(BCs).Several examples are presented to verify the effectiveness of the developed model.By coupling the slenderness ratio,gradient index,rotation speed,and size effect with the pre-twisted angle,the effects of these factors on the thermomechanical vibration of the microbeam with different BCs are investigated.It is found that with the increase in the pre-twisted angle,the critical slenderness ratio and gradient index corresponding to the thermal instability of the microbeam increase,while the critical material length scale parameter(MLSP)and rotation speed decrease.The sensitivity of the fundamental frequency to temperature increases with the increasing slenderness ratio and gradient index,and decreases with the other increasing parameters.Moreover,the size effect can suppress the dynamic stiffening effect and enhance the Coriolis effect.Finally,the mode transition is quantitatively demonstrated by a modal assurance criterion(MAC).
基金supported by the National Natural Science Foundation of China(Nos.11672252 and11602204)the Fundamental Research Funds for the Central Universities,Southwest Jiaotong University(No.2682016CX096)
文摘In this paper, multi-scale modeling for nanobeams with large deflection is conducted in the framework of the nonlocal strain gradient theory and the Euler-Bernoulli beam theory with exact bending curvature. The proposed size-dependent nonlinear beam model incorporates structure-foundation interaction along with two small scale parameters which describe the stiffness-softening and stiffness-hardening size effects of nanomaterials, respectively. By applying Hamilton's principle, the motion equation and the associated boundary condition are derived. A two-step perturbation method is introduced to handle the deep postbuckling and nonlinear bending problems of nanobeams analytically. Afterwards, the influence of geometrical, material, and elastic foundation parameters on the nonlinear mechanical behaviors of nanobeams is discussed. Numerical results show that the stability and precision of the perturbation solutions can be guaranteed, and the two types of size effects become increasingly important as the slenderness ratio increases. Moreover, the in-plane conditions and the high-order nonlinear terms appearing in the bending curvature expression play an important role in the nonlinear behaviors of nanobeams as the maximum deflection increases.
基金supported by the National Natural Science Foundation of China(Nos.11502218,11672252,11602204,and 12102373)the Fundamental Research Funds for the Central Universities of China(No.2682020ZT106)。
文摘In this study,the wave propagation properties of piezoelectric sandwich nanoplates deposited on an orthotropic viscoelastic foundation are analyzed by considering the surface effects(SEs).The nanoplates are composed of a composite layer reinforced by graphene and two piezoelectric surface layers.Utilizing the modified Halpin-Tsai model,the material parameters of composite layers are obtained.The displacement field is determined by the sinusoidal shear deformation theory(SSDT).The Euler-Lagrange equation is derived by employing Hamilton’s principle and the constitutive equations of piezoelectric layers considering the SEs.Subsequently,the nonlocal strain gradient theory(NSGT)is used to obtain the equations of motion.Next,the effects of scale parameters,graphene distribution,orthotropic viscoelastic foundation,and SEs on the propagation behavior are numerically examined.The results reveal that the wave frequency is a periodic function of the orthotropic angle.Furthermore,the wave frequency increases with the increase in the SEs.
基金Project supported by the National Natural Science Foundation of China(Nos.11702036,11602204,and 11502218)。
文摘Based on the nonlocal strain gradient theory(NSGT), a model is proposed for an axially moving nanobeam with two kinds of scale effects. The internal resonanceaccompanied fundamental harmonic response of the external excitation frequency in the vicinities of the first and second natural frequencies is studied by adopting the multivariate Lindstedt-Poincaré(L-P) method. Based on the root discriminant of the frequencyamplitude equation under internal resonance conditions, theoretical analyses are performed to investigate the scale effects of the resonance region and the critical external excitation amplitude. Numerical results show that the region of internal resonance is related to the amplitude of the external excitation. Particularly, the internal resonance disappears after a certain critical value of the external excitation amplitude is reached.It is also shown that the scale parameters, i.e., the nonlocal parameters and the material characteristic length parameters, respectively, reduce and increase the critical amplitude,leading to a promotion or suppression of the occurrence of internal resonance. In addition,the scale parameters affect the size of the enclosed loop of the bifurcated solution curves as well by changing their intersection, divergence, or tangency.
基金Project supported by the National Natural Science Foundation of China(Nos.11502218 and 11672252)。
文摘This study investigates the size-dependent wave propagation behaviors under the thermoelectric loads of porous functionally graded piezoelectric(FGP) nanoplates deposited in a viscoelastic foundation.It is assumed that(i) the material parameters of the nanoplates obey a power-law variation in thickness and(ii) the uniform porosity exists in the nanoplates.The combined effects of viscoelasticity and shear deformation are considered by using the Kelvin-Voigt viscoelastic model and the refined higher-order shear deformation theory.The scale effects of the nanoplates are captured by employing nonlocal strain gradient theory(NSGT).The motion equations are calculated in accordance with Hamilton’s principle.Finally,the dispersion characteristics of the nanoplates are numerically determined by using a harmonic solution.The results indicate that the nonlocal parameters(NLPs) and length scale parameters(LSPs) have exactly the opposite effects on the wave frequency.In addition,it is found that the effect of porosity volume fractions(PVFs) on the wave frequency depends on the gradient indices and damping coefficients.When these two values are small,the wave frequency increases with the volume fraction.By contrast,at larger gradient index and damping coefficient values,the wave frequency decreases as the volume fraction increases.
基金Project supported by the National Natural Science Foundation of Sichuan Province of China(Nos. 2022NSFSC2003, 23NSFSC0849, and 2023NSFSC1300)。
文摘This study examines the wave propagation characteristics for a bi-directional functional grading of barium titanate(BaTiO_(3)) and cobalt ferrite(CoFe_(2)O_(4)) porous nanoshells,the porosity distribution of which is simulated by the honeycomb-shaped symmetrical and asymmetrical distribution functions.The nonlocal strain gradient theory(NSGT) and first-order shear deformation theory are used to determine the size effect and shear deformation,respectively.Nonlocal governing equations are derived for the nanoshells by Hamilton's principle.The resulting dimensionless differential equations are solved by means of an analytical solution of the combined exponential function after dimensionless treatment.Finally,extensive parametric surveys are conducted to investigate the influence of diverse parameters,such as dimensionless scale parameters,radiusto-thickness ratios,bi-directional functionally graded(FG) indices,porosity coefficients,and dimensionless electromagnetic potentials on the wave propagation characteristics.Based on the analysis results,the effect of the dimensionless scale parameters on the dispersion relationship is found to be related to the ratio of the scale parameters.The wave propagation characteristics of nanoshells in the presence of a magnetoelectric field depend on the bi-directional FG indices.
基金This work was supported in part by the National Natural Science Foundation of China(Grant Nos.11502218,11672252 and 11602204)the Fundamental Research Funds for the Central Universities of China(Grant No.2682020ZT106).
文摘This research develops an analytical approach to explore the wave propagation problem of piezoelectric sandwich nanoplates.The core of the sandwich nanoplates is a nanocomposite layer reinforced with graphene platelets,which is integrated by two piezoelectric layers exposed to electric field.The material properties of nanocomposite layer are obtained by the Halpin–Tsai model and the rule of mixtures.The Euler–Lagrange equations of nanoplates are derived from Hamilton’s principle.By using the nonlocal strain gradient theory,the nonlocal governing equations are presented.Finally,numerical studies are conducted to demonstrate the influences of propagation angle,small-scale and external loads on wave frequency.The results reveal that the frequency changes periodically with the propagation angle and can be reduced by increasing voltage,temperature and the thickness of graphene platelets.
基金This work was supported in part by the National Natural Science Foundation of China(Grants 11502218,11672252,and 11602204)the Fundamental Research Funds for the Central Universities of China(Grant 2682020ZT106).
文摘Αn analytical method is developed to explore the wave propagation characteristics of piezoelectric sandwich nanoplates in the present work.The sandwich nanoplates are composed of a graphene reinforced composite core layer with two piezoelectric surface layers exposed to electric field.The material properties of the nanocomposite layer are given by the Halpin–Tsai model and mixture’s rule.The Euler–Lagrange equation of the nanoplates is obtained by Hamilton's principle and first-order shear deformation theory.Then,combining the high-order nonlocal strain gradient theory with the hygrothermal constitutive relationship of composite nanoplates,the nonlocal governing equations are presented.Finally,numerical studies are conducted to demonstrate the influences of scale parameters,applied external voltage,temperature variation,moisture variation,graphene size,and weight fraction on wave frequency.The results reveal that low-order and high-order nonlocal parameters and length scale parameters have different effects on wave frequency.The wave frequency can be reduced by increasing temperature and the thickness of graphene.This could facilitate the investigation of the dynamic properties of graphene nanocomposite structures.
基金This work is financially supported by the National Natural Science Foundation of China(Nos.1160220-1,11672252,11502218)the Fundamental Research Funds for the Central Universities,SWJTU(No.2682016CX096).
文摘This research explores the nonlinear bending behaviors of functionally graded carbon nanotube-reinforced(FG-CNTR)shallow arches with unmovable simply supported ends and clarnped-clamped ends;these arches are subjected to a uniform radial pressure and rest on a nonlinear elastic foundation.The temperature-dependent material properties of the arches are considered.Within the framework of Reddy shear deformation theory possessing von Karman nonlinearity,the motion equations and boundary conditions for the FG-CNTR arches are determined by the Euler-Lagrange variational principle.Then,a two-step perturbation technique is adopted to determine the load-deflection relationship analytically.To verify the validity of the developed model and related perturbation solutions,a numerical investigation is conducted for shallow arches with five distribution patterns of carbon nanotube(CNT)reinforcements uniaxially aligned in the axial direction.Finally,the influences of various factors,including the elastic foundation,layout type,and volume fraction of CNTs and geometric factors,on the nonlinear behaviors of FG-CNTR shallow arches are examined.The obtained results show that the load deflection curves exhibit less snap-through instability as the CNT volume fraction increases.The transverse shear stress versus the thickness of FG-CNTR shallow arches is markedly affected by the layout type and content of reinforcements.