Progress has been developed in harvesting lowfrequency and irregular blue energy using a triboelectric–electromagnetic hybrid generator in recent years. However,the design of the high-efficiency, mechanically durable...Progress has been developed in harvesting lowfrequency and irregular blue energy using a triboelectric–electromagnetic hybrid generator in recent years. However,the design of the high-efficiency, mechanically durable hybrid structure is still challenging. In this study, we report a fully packaged triboelectric–electromagnetic hybrid generator(TEHG), in which magnets were utilized as the trigger to drive contact–separation-mode triboelectric nanogenerators(CS-TENGs) and coupled with copper coils to operate rotary freestanding-mode electromagnetic generators(RF-EMGs). The magnet pairs that produce attraction were used to transfer the external mechanical energy to the CS-TENGs, and packaging of the CS-TENGpart was achieved to protect it from the ambient environment. Under a rotatory speed of 100 rpm, the CS-TENGs enabled the TEHG to deliver an output voltage, current,and average power of 315.8 V, 44.6 μA, and ~ 90.7 μW,and the output of the RF-EMGs was 0.59 V, 1.78 m A, and 79.6 μW, respectively. The cylinder-like structure made the TEHG more easily driven by water flow and demonstrated to work as a practical power source to charge commercial capacitors. It can charge a 33μF capacitor from 0 to 2.1 V in 84 s, and the stored energy in the capacitor can drive an electronic thermometer and form a self-powered water-temperature sensing system.展开更多
The urgent demand for portable electronics has promoted the development of high-efficienc)9 sustainable, and even stretchable self-charging power sources. In this work, we propose a flexible self-charging power unit ...The urgent demand for portable electronics has promoted the development of high-efficienc)9 sustainable, and even stretchable self-charging power sources. In this work, we propose a flexible self-charging power unit based on folded carbon (FC) paper for harvesting mechanical energy from human motion and power portable electronics. The present unit mainly consists of a triboelectric nanogenerator (FC-TENG) and a supercapacitor (FC-SC), both based on folded carbon paper, as energy harvester and storage device, respectively. This favorable geometric design provides the high Young's modulus carbon paper with excellent stretchability and enables the power unit to work even under severe deformations, such as bending, twisting, and rolling. In addition, the tensile strain can be maximized by tuning the folding angle of the triangle-folded carbon paper. Moreover, the waterproof property of the packaged device make it washable, protect it from human sweat, and enable it to work in harsh environments. Finally, the as-prepared self-charging power unit was tested by placing it on the human body to harvest mechanical energy from hand tapping, foot treading, and arm touching, successfully powering an electronic watch. This work demonstrates the impressive potential of stretchable self-charging power units, which will further promote the development of high Young's modulus materials for wearable/portable electronics.展开更多
基金funded by Natural Science Foundation of China (NSFC) (Grant No. U1432249)the National Key R&D Program of China (Grant 2017YFA0205002)+5 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)supported by Collaborative Innovation Center of Suzhou Nano Science & Technologythe support from China Postdoctoral Science Foundation (2017M610346)Natural Science Foundation of Jiangsu Province of China (BK20170343)Nantong Municipal Science and Technology Programthe support from Jiangsu University National Science Research Program (16KJB110021)
文摘Progress has been developed in harvesting lowfrequency and irregular blue energy using a triboelectric–electromagnetic hybrid generator in recent years. However,the design of the high-efficiency, mechanically durable hybrid structure is still challenging. In this study, we report a fully packaged triboelectric–electromagnetic hybrid generator(TEHG), in which magnets were utilized as the trigger to drive contact–separation-mode triboelectric nanogenerators(CS-TENGs) and coupled with copper coils to operate rotary freestanding-mode electromagnetic generators(RF-EMGs). The magnet pairs that produce attraction were used to transfer the external mechanical energy to the CS-TENGs, and packaging of the CS-TENGpart was achieved to protect it from the ambient environment. Under a rotatory speed of 100 rpm, the CS-TENGs enabled the TEHG to deliver an output voltage, current,and average power of 315.8 V, 44.6 μA, and ~ 90.7 μW,and the output of the RF-EMGs was 0.59 V, 1.78 m A, and 79.6 μW, respectively. The cylinder-like structure made the TEHG more easily driven by water flow and demonstrated to work as a practical power source to charge commercial capacitors. It can charge a 33μF capacitor from 0 to 2.1 V in 84 s, and the stored energy in the capacitor can drive an electronic thermometer and form a self-powered water-temperature sensing system.
文摘The urgent demand for portable electronics has promoted the development of high-efficienc)9 sustainable, and even stretchable self-charging power sources. In this work, we propose a flexible self-charging power unit based on folded carbon (FC) paper for harvesting mechanical energy from human motion and power portable electronics. The present unit mainly consists of a triboelectric nanogenerator (FC-TENG) and a supercapacitor (FC-SC), both based on folded carbon paper, as energy harvester and storage device, respectively. This favorable geometric design provides the high Young's modulus carbon paper with excellent stretchability and enables the power unit to work even under severe deformations, such as bending, twisting, and rolling. In addition, the tensile strain can be maximized by tuning the folding angle of the triangle-folded carbon paper. Moreover, the waterproof property of the packaged device make it washable, protect it from human sweat, and enable it to work in harsh environments. Finally, the as-prepared self-charging power unit was tested by placing it on the human body to harvest mechanical energy from hand tapping, foot treading, and arm touching, successfully powering an electronic watch. This work demonstrates the impressive potential of stretchable self-charging power units, which will further promote the development of high Young's modulus materials for wearable/portable electronics.