Developing an efficient photocatalytic system for hydrogen peroxide(H_(2)O_(2))activation in Fenton-like processes holds significant promise for advancing water purification technologies.However,challenges such as hig...Developing an efficient photocatalytic system for hydrogen peroxide(H_(2)O_(2))activation in Fenton-like processes holds significant promise for advancing water purification technologies.However,challenges such as high carrier recombination rates,limited active sites,and suboptimal H_(2)O_(2)activation efficiency impede optimal performance.Here we show that single-iron-atom dispersed Bi_(2)WO_(6)monolayers(SIAD-BWOM),designed through a facile hydrothermal approach,can offer abundant active sites for H_(2)O_(2)activation.The SIAD-BWOM catalyst demonstrates superior photo-Fenton degradation capabilities,particularly for the persistent pesticide dinotefuran(DNF),showcasing its potential in addressing recalcitrant organic pollutants.We reveal that the incorporation of iron atoms in place of tungsten within the electron-rich[WO_(4)]^(2-)layers significantly facilitates electron transfer processes and boosts the Fe(II)/Fe(III)cycle efficiency.Complementary experimental investigations and theoretical analyses further elucidate how the atomically dispersed iron induces lattice strain in the Bi_(2)WO_(6)monolayer,thereby modulating the d-band center of iron to improve H_(2)O_(2)adsorption and activation.Our research provides a practical framework for developing advanced photo-Fenton catalysts,which can be used to treat emerging and refractory organic pollutants more effectively.展开更多
Photoabsorption charge separation/transfer and surface reaction are the three main factors influencing the efficiency of photocatalysis.Band structure engineering has been extensively applied to improve the light abso...Photoabsorption charge separation/transfer and surface reaction are the three main factors influencing the efficiency of photocatalysis.Band structure engineering has been extensively applied to improve the light absorption of photocatalysts,however,most of the developed photocatalysts still suffer from low photocatalytic performance due to the limited active site(s)and fast recombination of photogenerated charge carriers.In this work,atomically dispersed main group magnesium(Mg)is introduced onto CdS monodispersed nanospheres,which greatly enhances the photocatalytic hydrogen evolution reaction.The photocatalytic hydrogen evolution reaction rate reaches 30.6 mmol·gcatalyst^(-1)·h^(-1),which is about 11.8 and 2.5 times that of pure CdS and Pt(2 wt.%)-CdS.The atomically dispersed Mg on CdS acts as an electron sink to trap photogenerated electrons,and at the same time,greatly reduces the Gibbs free energy of hydrogen evolution reaction(HER)and accelerates HER.展开更多
The quasi-homogeneous photocatalytic system can be formed by iodide ions induced fragmented and ultrathin structured TP-PCN.The TP-PCN possesses abundant edge active sites,which can greatly enhance the O_(2)adsorption...The quasi-homogeneous photocatalytic system can be formed by iodide ions induced fragmented and ultrathin structured TP-PCN.The TP-PCN possesses abundant edge active sites,which can greatly enhance the O_(2)adsorption/activation capacity and the 2e-ORR selectivity.As expected,the quasi-homogeneous system affords a remarkably increased photocatalytic H_(2)O_(2)production activity.展开更多
Atrazine(ATZ),as one of the most extensively employed organochlorine-based herbicides,exhibits persistence and environmental toxicity.Photocatalytic technology based on polymer carbon nitride is regarded as a sus-tain...Atrazine(ATZ),as one of the most extensively employed organochlorine-based herbicides,exhibits persistence and environmental toxicity.Photocatalytic technology based on polymer carbon nitride is regarded as a sus-tainable and promising approach for the degradation of emerging organic pollutants.Regrettably,the inherent shortcomings of pure carbon nitride greatly limit its practical application.Herein,S-doped carbon nitride was elaborately constructed for efficient degradation of ATZ.The removal efficiency of ATZ by the optimal sample(0.052 min^(-1))is 3.25 times as that of pure carbon nitride(0.016 min^(-1)).Experiments and DFT calculations show that S doping optimizes electronic structure of carbon nitride,which significantly enhances the spatial separation and transfer efficiency of photogenerated electrons and holes.Moreover,the reactive sites and degradation paths of ATZ were predicted by Fukui function and LC-MS determination.Our work provides an effective approach for the design of efficient photocatalysts to achieve efficient environmental remediation.展开更多
基金financial support from the Natural Science Foundation of China(51979081,52100179)Fundamental Research Funds for the Central Universities(B200202103)+1 种基金National Science Funds for Creative Research Groups of China(No.51421006)PAPD and Photon Science Research center for Carbon Dioxide.
文摘Developing an efficient photocatalytic system for hydrogen peroxide(H_(2)O_(2))activation in Fenton-like processes holds significant promise for advancing water purification technologies.However,challenges such as high carrier recombination rates,limited active sites,and suboptimal H_(2)O_(2)activation efficiency impede optimal performance.Here we show that single-iron-atom dispersed Bi_(2)WO_(6)monolayers(SIAD-BWOM),designed through a facile hydrothermal approach,can offer abundant active sites for H_(2)O_(2)activation.The SIAD-BWOM catalyst demonstrates superior photo-Fenton degradation capabilities,particularly for the persistent pesticide dinotefuran(DNF),showcasing its potential in addressing recalcitrant organic pollutants.We reveal that the incorporation of iron atoms in place of tungsten within the electron-rich[WO_(4)]^(2-)layers significantly facilitates electron transfer processes and boosts the Fe(II)/Fe(III)cycle efficiency.Complementary experimental investigations and theoretical analyses further elucidate how the atomically dispersed iron induces lattice strain in the Bi_(2)WO_(6)monolayer,thereby modulating the d-band center of iron to improve H_(2)O_(2)adsorption and activation.Our research provides a practical framework for developing advanced photo-Fenton catalysts,which can be used to treat emerging and refractory organic pollutants more effectively.
基金We are grateful for the financial support from the Natural Science Foundation of China(51979081)Fundamental Research Funds for the Central Universities(No.B200202103)+2 种基金Ministry of Education of Singapore(Tier 1:RG4/20 and Tier 2:MOET2EP10120-0002)Agency for Science,Technology and Research(AME IRG:A20E5c0080)PAPD。
文摘Photoabsorption charge separation/transfer and surface reaction are the three main factors influencing the efficiency of photocatalysis.Band structure engineering has been extensively applied to improve the light absorption of photocatalysts,however,most of the developed photocatalysts still suffer from low photocatalytic performance due to the limited active site(s)and fast recombination of photogenerated charge carriers.In this work,atomically dispersed main group magnesium(Mg)is introduced onto CdS monodispersed nanospheres,which greatly enhances the photocatalytic hydrogen evolution reaction.The photocatalytic hydrogen evolution reaction rate reaches 30.6 mmol·gcatalyst^(-1)·h^(-1),which is about 11.8 and 2.5 times that of pure CdS and Pt(2 wt.%)-CdS.The atomically dispersed Mg on CdS acts as an electron sink to trap photogenerated electrons,and at the same time,greatly reduces the Gibbs free energy of hydrogen evolution reaction(HER)and accelerates HER.
文摘The quasi-homogeneous photocatalytic system can be formed by iodide ions induced fragmented and ultrathin structured TP-PCN.The TP-PCN possesses abundant edge active sites,which can greatly enhance the O_(2)adsorption/activation capacity and the 2e-ORR selectivity.As expected,the quasi-homogeneous system affords a remarkably increased photocatalytic H_(2)O_(2)production activity.
基金support from National Key Research and Development Program of China(2022YFC3202402)the Fundamental Research Funds for the Cornell University(B230205044)+2 种基金Natural Science Foundation of China(51979081,52100179)Fundamental Research Funds for the Central Universities(B200202103)PAPD,Postgraduate Research&Practice Innovation Program of Jiangsu Province.
文摘Atrazine(ATZ),as one of the most extensively employed organochlorine-based herbicides,exhibits persistence and environmental toxicity.Photocatalytic technology based on polymer carbon nitride is regarded as a sus-tainable and promising approach for the degradation of emerging organic pollutants.Regrettably,the inherent shortcomings of pure carbon nitride greatly limit its practical application.Herein,S-doped carbon nitride was elaborately constructed for efficient degradation of ATZ.The removal efficiency of ATZ by the optimal sample(0.052 min^(-1))is 3.25 times as that of pure carbon nitride(0.016 min^(-1)).Experiments and DFT calculations show that S doping optimizes electronic structure of carbon nitride,which significantly enhances the spatial separation and transfer efficiency of photogenerated electrons and holes.Moreover,the reactive sites and degradation paths of ATZ were predicted by Fukui function and LC-MS determination.Our work provides an effective approach for the design of efficient photocatalysts to achieve efficient environmental remediation.