期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Post-Impact Motion Planning and Tracking Control for Autonomous Vehicles 被引量:6
1
作者 Cong Wang Zhenpo Wang +2 位作者 Lei Zhang huilong yu Dongpu Cao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2022年第5期315-332,共18页
There is an increasing awareness of the need to reduce traffic accidents and fatality due to vehicle collision.Post-impact hazards can be more serious as the driver may fail to maintain effective control after collisi... There is an increasing awareness of the need to reduce traffic accidents and fatality due to vehicle collision.Post-impact hazards can be more serious as the driver may fail to maintain effective control after collisions.To avoid subsequent crash events and to stabilize the vehicle,this paper proposes a post-impact motion planning and stability control method for autonomous vehicles.An enabling motion planning method is proposed for post-impact situations by combining the polynomial curve and artificial potential field while considering obstacle avoidance.A hierarchical controller that consists of an upper and a lower controller is then developed to track the planned motion.In the upper controller,a time-varying linear quadratic regulator is presented to calculate the desired generalized forces.In the lower controller,a nonlinear-optimization-based torque allocation algorithm is proposed to optimally coordinate the actuators to realize the desired generalized forces.The proposed scheme is verified under comprehensive driving scenarios through hardware-in-loop tests. 展开更多
关键词 Active safety Post-impact control Motion planning Vehicle dynamics control
在线阅读 下载PDF
Lane-Exchanging Driving Strategy for Autonomous Vehicle via Trajectory Prediction and Model Predictive Control 被引量:3
2
作者 Yimin Chen huilong yu +1 位作者 Jinwei Zhang Dongpu Cao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2022年第4期256-267,共12页
The cooperation between an autonomous vehicle and a nearby vehicle is critical to ensure driving safety in the laneexchanging scenario.The nearby vehicle trajectory needs to be predicted,from which the autonomous vehi... The cooperation between an autonomous vehicle and a nearby vehicle is critical to ensure driving safety in the laneexchanging scenario.The nearby vehicle trajectory needs to be predicted,from which the autonomous vehicle is controlled to prevent possible collisions.This paper proposes a lane-exchanging driving strategy for the autonomous vehicle to cooperate with the nearby vehicle by integrating vehicle trajectory prediction and motion control.A trajectory prediction method is developed to anticipate the nearby vehicle trajectory.The Gaussian mixture model(GMM),together with the vehicle kinematic model,are synthesized to predict the nearby vehicle trajectory.A potential-feldbased model predictive control(MPC)approach is utilized by the autonomous vehicle to conduct the lane-exchanging maneuver.The potential feld of the nearby vehicle is considered in the controller design for collision avoidance.On-road driving data verifcation shows that the nearby vehicle trajectory can be predicted by the proposed method.CarSim®simulations validate that the autonomous vehicle can perform the lane-exchanging maneuver and avoid the nearby vehicle using the proposed driving strategy.The autonomous vehicle can thus safely perform the laneexchanging maneuver and avoid the nearby vehicle. 展开更多
关键词 Autonomous vehicle Lane-exchanging Vehicle trajectory prediction Potential feld Model predictive control
在线阅读 下载PDF
A novel method for calculating broadband electrical performance of high-speed aircraft radome under thermo-mechanical-electrical coupling
3
作者 Jianmin JI Jianhua REN +4 位作者 Xunya JIANG Wei WANG huilong yu Kai YIN Bo CHEN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第9期463-474,共12页
The electrical performance of radomes on high-speed aircraft can be influenced by the thermal and mechanical loads produced during high-speed flight,which can affect the detection dis-tance and accuracy of the guidanc... The electrical performance of radomes on high-speed aircraft can be influenced by the thermal and mechanical loads produced during high-speed flight,which can affect the detection dis-tance and accuracy of the guidance system.This paper presents a new method that uses the Finite Difference Time Domain(FDTD)method to calculate the electrical performance of radomes under Thermo-Mechanical-Electrical(TME)coupling.This method can accurately characterize the effects of material dielectric temperature drift and structural deformation on the electrical performance of the radome under flight conditions,enabling high-precision full-wave calculations of the broadband electrical performance of the radome.The method initiates by utilizing a Finite Element Grid Model(FE-GM)of the radome to sequentially acquire the radome's response temperature field and structural deformation field through thermal and mechanical simulations.Subsequently,spatial mapping techniques are developed to accurately incorporate the dielectric temperature drift and structural deformation of the radome into its Yee grid Electromagnetic(EM)simulation model.A verification case was designed to test the proposed method,and the results confirmed its high computational accuracy.Additionally,the effectiveness and necessity of the method were further demonstrated by analyzing the electrical performance of a fused silica ceramic radome used on a high-speed aircraft. 展开更多
关键词 High-speed aircraft RADOMES Thermo-Mechanical-Electrical(TME)coupling Finite Difference Time Domain(FDTD)method Spatial mapping
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部