The interpretability of deep learning models has emerged as a compelling area in artificial intelligence research.The safety criteria for medical imaging are highly stringent,and models are required for an explanation...The interpretability of deep learning models has emerged as a compelling area in artificial intelligence research.The safety criteria for medical imaging are highly stringent,and models are required for an explanation.However,existing convolutional neural network solutions for left ventricular segmentation are viewed in terms of inputs and outputs.Thus,the interpretability of CNNs has come into the spotlight.Since medical imaging data are limited,many methods to fine-tune medical imaging models that are popular in transfer models have been built using massive public Image Net datasets by the transfer learning method.Unfortunately,this generates many unreliable parameters and makes it difficult to generate plausible explanations from these models.In this study,we trained from scratch rather than relying on transfer learning,creating a novel interpretable approach for autonomously segmenting the left ventricle with a cardiac MRI.Our enhanced GPU training system implemented interpretable global average pooling for graphics using deep learning.The deep learning tasks were simplified.Simplification included data management,neural network architecture,and training.Our system monitored and analyzed the gradient changes of different layers with dynamic visualizations in real-time and selected the optimal deployment model.Our results demonstrated that the proposed method was feasible and efficient:the Dice coefficient reached 94.48%,and the accuracy reached 99.7%.It was found that no current transfer learning models could perform comparably to the ImageNet transfer learning architectures.This model is lightweight and more convenient to deploy on mobile devices than transfer learning models.展开更多
In this work, we propose an improved alternative route calculation based on alternative figures, which is suitable for practical environments. The improvement is based on the fact that the main traffic route is the ro...In this work, we propose an improved alternative route calculation based on alternative figures, which is suitable for practical environments. The improvement is based on the fact that the main traffic route is the road network skeleton in a city. Our approach using nodes may generate a higher possibility of overlapping. We employ a bidirectional Dijkstra algorithm to search the route. To measure the quality of an Alternative Figures (AG), three quotas are proposed. The experiment results indicate that the im- proved algorithm proposed in this paper is more effective than others.展开更多
Cardiovascular problems have become the predominant cause of death worldwide and a rise in the number of patients has been observed lately.Currently,electrocardiogram(ECG)data is analyzed by medical experts to determi...Cardiovascular problems have become the predominant cause of death worldwide and a rise in the number of patients has been observed lately.Currently,electrocardiogram(ECG)data is analyzed by medical experts to determine the cardiac abnormality,which is time-consuming.In addition,the diagnosis requires experienced medical experts and is error-prone.However,automated identification of cardiovascular disease using ECGs is a challenging problem and state-of-the-art performance has been attained by complex deep learning architectures.This study proposes a simple multilayer perceptron(MLP)model for heart disease prediction to reduce computational complexity.ECG dataset containing averaged signals with window size 10 is used as an input.Several competing deep learning and machine learning models are used for comparison.K-fold cross-validation is used to validate the results.Experimental outcomes reveal that the MLP-based architecture can produce better outcomes than existing approaches with a 94.40%accuracy score.The findings of this study show that the proposed system achieves high performance indicating that it has the potential for deployment in a real-world,practical medical environment.展开更多
The proliferation of mobile devices that support the acceleration of data services(especially smartphones)has resulted in a dramatic increase in mobile traffic. Mobile data also increased exponentially, already exceed...The proliferation of mobile devices that support the acceleration of data services(especially smartphones)has resulted in a dramatic increase in mobile traffic. Mobile data also increased exponentially, already exceeding the throughput of the backhaul. To improve spectrum utilization and increase mobile network traffic, in combination with content caching, we study the cooperation between primary and secondary networks via content caching. We consider that the secondary base station assists the primary user by pre-caching some popular primary contents.Thus, the secondary base station can obtain more licensed bandwidth to serve its own user. We mainly focus on the time delay from the backhaul link to the secondary base station. First, in terms of the content caching and the transmission strategies, we provide a cooperation scheme to maximize the secondary user’s effective data transmission rates under the constraint of the primary users target rate. Then, we investigate the impact of the caching allocation and prove that the formulated problem is a concave problem with regard to the caching capacity allocation for any given power allocation. Furthermore, we obtain the joint caching and power allocation by an effective bisection search algorithm. Finally, our results show that the content caching cooperation scheme can achieve significant performance gain for the primary and secondary systems over the traditional two-hop relay cooperation without caching.展开更多
基金The National Natural Science Foundation of China (62176048)provided funding for this research.
文摘The interpretability of deep learning models has emerged as a compelling area in artificial intelligence research.The safety criteria for medical imaging are highly stringent,and models are required for an explanation.However,existing convolutional neural network solutions for left ventricular segmentation are viewed in terms of inputs and outputs.Thus,the interpretability of CNNs has come into the spotlight.Since medical imaging data are limited,many methods to fine-tune medical imaging models that are popular in transfer models have been built using massive public Image Net datasets by the transfer learning method.Unfortunately,this generates many unreliable parameters and makes it difficult to generate plausible explanations from these models.In this study,we trained from scratch rather than relying on transfer learning,creating a novel interpretable approach for autonomously segmenting the left ventricle with a cardiac MRI.Our enhanced GPU training system implemented interpretable global average pooling for graphics using deep learning.The deep learning tasks were simplified.Simplification included data management,neural network architecture,and training.Our system monitored and analyzed the gradient changes of different layers with dynamic visualizations in real-time and selected the optimal deployment model.Our results demonstrated that the proposed method was feasible and efficient:the Dice coefficient reached 94.48%,and the accuracy reached 99.7%.It was found that no current transfer learning models could perform comparably to the ImageNet transfer learning architectures.This model is lightweight and more convenient to deploy on mobile devices than transfer learning models.
文摘In this work, we propose an improved alternative route calculation based on alternative figures, which is suitable for practical environments. The improvement is based on the fact that the main traffic route is the road network skeleton in a city. Our approach using nodes may generate a higher possibility of overlapping. We employ a bidirectional Dijkstra algorithm to search the route. To measure the quality of an Alternative Figures (AG), three quotas are proposed. The experiment results indicate that the im- proved algorithm proposed in this paper is more effective than others.
文摘Cardiovascular problems have become the predominant cause of death worldwide and a rise in the number of patients has been observed lately.Currently,electrocardiogram(ECG)data is analyzed by medical experts to determine the cardiac abnormality,which is time-consuming.In addition,the diagnosis requires experienced medical experts and is error-prone.However,automated identification of cardiovascular disease using ECGs is a challenging problem and state-of-the-art performance has been attained by complex deep learning architectures.This study proposes a simple multilayer perceptron(MLP)model for heart disease prediction to reduce computational complexity.ECG dataset containing averaged signals with window size 10 is used as an input.Several competing deep learning and machine learning models are used for comparison.K-fold cross-validation is used to validate the results.Experimental outcomes reveal that the MLP-based architecture can produce better outcomes than existing approaches with a 94.40%accuracy score.The findings of this study show that the proposed system achieves high performance indicating that it has the potential for deployment in a real-world,practical medical environment.
基金supported by the National Natural Science Foundation of China (No. 61871283)the Foundation of Pre-Research on Equipment of China (No. 61403120103)the Joint Foundation of Pre-Research on Equipment from Education Department of China (No. 6141A02022336)
文摘The proliferation of mobile devices that support the acceleration of data services(especially smartphones)has resulted in a dramatic increase in mobile traffic. Mobile data also increased exponentially, already exceeding the throughput of the backhaul. To improve spectrum utilization and increase mobile network traffic, in combination with content caching, we study the cooperation between primary and secondary networks via content caching. We consider that the secondary base station assists the primary user by pre-caching some popular primary contents.Thus, the secondary base station can obtain more licensed bandwidth to serve its own user. We mainly focus on the time delay from the backhaul link to the secondary base station. First, in terms of the content caching and the transmission strategies, we provide a cooperation scheme to maximize the secondary user’s effective data transmission rates under the constraint of the primary users target rate. Then, we investigate the impact of the caching allocation and prove that the formulated problem is a concave problem with regard to the caching capacity allocation for any given power allocation. Furthermore, we obtain the joint caching and power allocation by an effective bisection search algorithm. Finally, our results show that the content caching cooperation scheme can achieve significant performance gain for the primary and secondary systems over the traditional two-hop relay cooperation without caching.