Optical microscopy allows us to observe the biological structures and processes within living cells.However,the spatial resolution of the optical microscopy is limited to about half of the wavelength by the light di...Optical microscopy allows us to observe the biological structures and processes within living cells.However,the spatial resolution of the optical microscopy is limited to about half of the wavelength by the light di®raction.Structured illumination microscopy(SIM),a type of new emerging super-resolution microscopy,doubles the spatial resolution by illuminating the specimen with a patterned light,and the sample and light source requirements of SIM are not as strict as the other super-resolution microscopy.In addition,SIM is easier to combine with the other imaging techniques to improve their imaging resolution,leading to the developments of diverse types of SIM.SIM has great potential to meet the various requirements of living cells imaging.Here,we review the recent developments of SIM and its combination with other imaging techniques.展开更多
The binding interaction between tetra-(p-sulfoazophenyl-4-aminosulfonyl)-substituted aluminum(Ⅲ)phthalocyanine(AIPc),and two-serum albumins(bovine serum albumin(BSA)and human serum albumin(HSA))has been investigated....The binding interaction between tetra-(p-sulfoazophenyl-4-aminosulfonyl)-substituted aluminum(Ⅲ)phthalocyanine(AIPc),and two-serum albumins(bovine serum albumin(BSA)and human serum albumin(HSA))has been investigated.AlPc could quench the intrinsic fuorescence of BSA and HSA through a static quenching process.The primary and secondary binding sites of AlPc on BSA were domainⅠandⅢof BSA.The primary binding site of AIPc on HSA was domainⅠ,and the secondary binding sites of AlPc on HSA were found at domainsⅠandⅡ.Our results suggest that AIPc readily interact with BSA and HSA implying that the amphiphilic substituents AIPc may contribute to their transportation in the blood.展开更多
Image scanning microscopy based on pixel reassignment can improve the confocal resolution limit without losing the image signal-to-noise ratio(SNR)greatly[C.J.R.Sheppard,"Super resolution in confocal imaging,&quo...Image scanning microscopy based on pixel reassignment can improve the confocal resolution limit without losing the image signal-to-noise ratio(SNR)greatly[C.J.R.Sheppard,"Super resolution in confocal imaging,"Optik 80(2)53-54(1988).C.B.Miller,E.Jorg,"Image scanning microscopy,"Phys.Reu.Lett.104(19)198101(2010).C.J.R.Sheppard,s.B.Mehta,R Heintzmann,"Superresolution by image scanning microscopy using pixel reassignment,"Opt.Lett.38(15)28892892(2013)].Here,we use a tailor-made optical fiber and 19 avalanche pho-todiodes(APDs)as parallel detectors to upgrade our existing confocal microscopy,termed as parallel-detection super resolution(PDSR)microscopy.In order to obtain the correct shift value,we use the normalized 2D cross correlation to calculate the shifting value of each image.We characterized our system performance by imaging fuorescence beads and applied this system to observing the 3D structure of biological specimen.展开更多
Far-¯eld°uorescence microscopy has made great progress in the spatial resolution,limited by light diffraction,since the super-resolution imaging technology appeared.And stimulated emission depletion(STED)mic...Far-¯eld°uorescence microscopy has made great progress in the spatial resolution,limited by light diffraction,since the super-resolution imaging technology appeared.And stimulated emission depletion(STED)microscopy and structured illumination microscopy(SIM)can be grouped into one class of the super-resolution imaging technology,which use pattern illumination strategy to circumvent the di®raction limit.We simulated the images of the beads of SIM imaging,the intensity distribution of STED excitation light and depletion light in order to observe effects of the polarized light on imaging quality.Compared to¯xed linear polarization,circularly polarized light is more suitable for SIM on reconstructed image.And right-handed circular polarization(CP)light is more appropriate for both the excitation and depletion light in STED system.Therefore the right-handed CP light would be the best candidate when the SIM and STED are combined into one microscope.Good understanding of the polarization will provide a reference for the patterned illumination experiment to achieve better resolution and better image quality.展开更多
In this paper,optical coherence tomography(OCT)and surface-enhanced Raman spectroscopy(SERS)were used to characterize normal knee joint(NKJ)tissue and knee osteoarthritis(KOA)tissue ex vivo.OCT images show that there ...In this paper,optical coherence tomography(OCT)and surface-enhanced Raman spectroscopy(SERS)were used to characterize normal knee joint(NKJ)tissue and knee osteoarthritis(KOA)tissue ex vivo.OCT images show that there is a clear hierarchical structure in NKJ tissue,including surface layer,transitional layer,radiation layer and cartilage matrix calcification layer tissue structure,while the hierarchical structure of KOA tissue is not clear and unevenly distributed,and the pathological tissues at different stages also show significant di®erences.SERS shows that NKJ tissue and mild osteoarthritic knee cartilage(MiKOA)tissue have strong characteristic Raman peaks at 964,1073(1086),1271,1305,1442,1660 and 1763 cm^(-1).Compared with the Raman spectrum of NKJ tissue,the Raman characteristic peaks of MiKOA tissue have some shifts,moving from 1073 cm^(-1)to 1086 cm^(-1)and from 1542 cm^(-1)to 1442 cm^(-1).There is a characteristic Raman peak of 1271 cm^(-1)in MiKOA tissue,but not in NKJ tissue.Compared with NKJ tissue,severely degenerated cartilage(SdKOA)tissues show some new SERS peaks at 1008,1245,1285,1311 and 1321 cm^(-1),which are not seen in SERS spectra of NKJ tissue.Principal component analysis(PCA)was used to analyze the Raman spectra of 1245–1345 cm^(-1)region.The results show that PCA can distinguish NKJ,MiKOA and SdKOA tissues and the accuracy is about 90%.These results indicate that OCT can clearly distinguish NKJ,MiKOA,moderate osteoarthritic knee cartilage(MoKOA)and SdKOA tissue,while SERS can provide further judgment basis.The results also prove that the contents of protein and polysaccharide in knee tissue are changed during the pathological process of knee tissue,which is the cause of pain caused by poor friction in knee joint during movement.展开更多
Laser speckle contrast imaging(LSCI)is a noninvasive,label-free technique that allows real-time investigation of the microcirculation situation of biological tissue.High-quality microvascular segmentation is critical ...Laser speckle contrast imaging(LSCI)is a noninvasive,label-free technique that allows real-time investigation of the microcirculation situation of biological tissue.High-quality microvascular segmentation is critical for analyzing and evaluating vascular morphology and blood flow dynamics.However,achieving high-quality vessel segmentation has always been a challenge due to the cost and complexity of label data acquisition and the irregular vascular morphology.In addition,supervised learning methods heavily rely on high-quality labels for accurate segmentation results,which often necessitate extensive labeling efforts.Here,we propose a novel approach LSWDP for high-performance real-time vessel segmentation that utilizes low-quality pseudo-labels for nonmatched training without relying on a substantial number of intricate labels and image pairing.Furthermore,we demonstrate that our method is more robust and effective in mitigating performance degradation than traditional segmentation approaches on diverse style data sets,even when confronted with unfamiliar data.Importantly,the dice similarity coefficient exceeded 85%in a rat experiment.Our study has the potential to efficiently segment and evaluate blood vessels in both normal and disease situations.This would greatly benefit future research in life and medicine.展开更多
基金This study was partly supported by the National Key Basic Research Program of China (973 Program)under Grant No.2015CB352006the National Natural Science Foundation of China under Grants Nos.61335011 and 61405035Program for Changjiang Scholars and Innovative Research Team in University under Grant No.IRT 15R10.
文摘Optical microscopy allows us to observe the biological structures and processes within living cells.However,the spatial resolution of the optical microscopy is limited to about half of the wavelength by the light di®raction.Structured illumination microscopy(SIM),a type of new emerging super-resolution microscopy,doubles the spatial resolution by illuminating the specimen with a patterned light,and the sample and light source requirements of SIM are not as strict as the other super-resolution microscopy.In addition,SIM is easier to combine with the other imaging techniques to improve their imaging resolution,leading to the developments of diverse types of SIM.SIM has great potential to meet the various requirements of living cells imaging.Here,we review the recent developments of SIM and its combination with other imaging techniques.
基金the National Key Basic Research Program of China1 unc der Grant No.2015CB352006the National Natural Science Foundation of China under Grant Nos.61335011 and 21274021+2 种基金the Program for Chang-jiang Scholars and Innovative Research Team l in University under Grant No.IRT15R10the Na-tional High Technology Research and Development Program of China under Grant No.2015AA020508Natural Science Foundation of Fujian Province under Grant Nos.2015J01040 and 2014J01225.
文摘The binding interaction between tetra-(p-sulfoazophenyl-4-aminosulfonyl)-substituted aluminum(Ⅲ)phthalocyanine(AIPc),and two-serum albumins(bovine serum albumin(BSA)and human serum albumin(HSA))has been investigated.AlPc could quench the intrinsic fuorescence of BSA and HSA through a static quenching process.The primary and secondary binding sites of AlPc on BSA were domainⅠandⅢof BSA.The primary binding site of AIPc on HSA was domainⅠ,and the secondary binding sites of AlPc on HSA were found at domainsⅠandⅡ.Our results suggest that AIPc readily interact with BSA and HSA implying that the amphiphilic substituents AIPc may contribute to their transportation in the blood.
基金sponsored by National Natural Science Foundation of China(61827825 and 61735017)Fundamental Research Funds for the Central Universities(2019XZZX003-06)+1 种基金Natural Science Foundation of Zhejiang province(LR16F050001)Zhejiang Lab(2018EB0ZX01).
文摘Image scanning microscopy based on pixel reassignment can improve the confocal resolution limit without losing the image signal-to-noise ratio(SNR)greatly[C.J.R.Sheppard,"Super resolution in confocal imaging,"Optik 80(2)53-54(1988).C.B.Miller,E.Jorg,"Image scanning microscopy,"Phys.Reu.Lett.104(19)198101(2010).C.J.R.Sheppard,s.B.Mehta,R Heintzmann,"Superresolution by image scanning microscopy using pixel reassignment,"Opt.Lett.38(15)28892892(2013)].Here,we use a tailor-made optical fiber and 19 avalanche pho-todiodes(APDs)as parallel detectors to upgrade our existing confocal microscopy,termed as parallel-detection super resolution(PDSR)microscopy.In order to obtain the correct shift value,we use the normalized 2D cross correlation to calculate the shifting value of each image.We characterized our system performance by imaging fuorescence beads and applied this system to observing the 3D structure of biological specimen.
基金This work was partly supported by the National Key Basic Research Program of China (973 project)under Grant No.2015CB352006the National Natural Science Foundation of China under Grant Nos.61335011 and 61405035Program for Changjiang Scholars and Innovative Research Team in University under Grant No.IRT 15R10.
文摘Far-¯eld°uorescence microscopy has made great progress in the spatial resolution,limited by light diffraction,since the super-resolution imaging technology appeared.And stimulated emission depletion(STED)microscopy and structured illumination microscopy(SIM)can be grouped into one class of the super-resolution imaging technology,which use pattern illumination strategy to circumvent the di®raction limit.We simulated the images of the beads of SIM imaging,the intensity distribution of STED excitation light and depletion light in order to observe effects of the polarized light on imaging quality.Compared to¯xed linear polarization,circularly polarized light is more suitable for SIM on reconstructed image.And right-handed circular polarization(CP)light is more appropriate for both the excitation and depletion light in STED system.Therefore the right-handed CP light would be the best candidate when the SIM and STED are combined into one microscope.Good understanding of the polarization will provide a reference for the patterned illumination experiment to achieve better resolution and better image quality.
基金The National Natural Science Foundation of China under Grant Nos.60778047,61335011,61275187,and 81071790in part by the Natural Science Foundation of Guangdong Province under Grant No.2016A030313370.
文摘In this paper,optical coherence tomography(OCT)and surface-enhanced Raman spectroscopy(SERS)were used to characterize normal knee joint(NKJ)tissue and knee osteoarthritis(KOA)tissue ex vivo.OCT images show that there is a clear hierarchical structure in NKJ tissue,including surface layer,transitional layer,radiation layer and cartilage matrix calcification layer tissue structure,while the hierarchical structure of KOA tissue is not clear and unevenly distributed,and the pathological tissues at different stages also show significant di®erences.SERS shows that NKJ tissue and mild osteoarthritic knee cartilage(MiKOA)tissue have strong characteristic Raman peaks at 964,1073(1086),1271,1305,1442,1660 and 1763 cm^(-1).Compared with the Raman spectrum of NKJ tissue,the Raman characteristic peaks of MiKOA tissue have some shifts,moving from 1073 cm^(-1)to 1086 cm^(-1)and from 1542 cm^(-1)to 1442 cm^(-1).There is a characteristic Raman peak of 1271 cm^(-1)in MiKOA tissue,but not in NKJ tissue.Compared with NKJ tissue,severely degenerated cartilage(SdKOA)tissues show some new SERS peaks at 1008,1245,1285,1311 and 1321 cm^(-1),which are not seen in SERS spectra of NKJ tissue.Principal component analysis(PCA)was used to analyze the Raman spectra of 1245–1345 cm^(-1)region.The results show that PCA can distinguish NKJ,MiKOA and SdKOA tissues and the accuracy is about 90%.These results indicate that OCT can clearly distinguish NKJ,MiKOA,moderate osteoarthritic knee cartilage(MoKOA)and SdKOA tissue,while SERS can provide further judgment basis.The results also prove that the contents of protein and polysaccharide in knee tissue are changed during the pathological process of knee tissue,which is the cause of pain caused by poor friction in knee joint during movement.
基金supported by grants fromthe State Key Laboratory of Vaccines for Infectious Diseases,Xiang An Biomedicine Laboratory(2023XAKJ0101031)National Natural Science Foundation of China(81971665)+8 种基金Natural Science Foundation of Fujian Province(2021J011366)Medical and Health Guidance Project of Xiamen(3502Z20214ZD1016)Xiamen Health High-Level Talent Training Program,Ningxia Hui Autonomous Region Key Research and Development Program(2022BEG03127)Fundamental Research Funds for the Central Universities of China(20720210117)Fujian Province Science and Technology Plan Guiding Project(2022Y0002)National Natural Science Foundation of China(62005048)Natural Science Foundation of Fujian Province(2020J01158)Ministry of Education Industry-university Cooperative Education Project(220606053295218)XMU Undergraduate Innovation and Entrepreneurship Training Programs(2023X805,2023X808,2023Y1109).
文摘Laser speckle contrast imaging(LSCI)is a noninvasive,label-free technique that allows real-time investigation of the microcirculation situation of biological tissue.High-quality microvascular segmentation is critical for analyzing and evaluating vascular morphology and blood flow dynamics.However,achieving high-quality vessel segmentation has always been a challenge due to the cost and complexity of label data acquisition and the irregular vascular morphology.In addition,supervised learning methods heavily rely on high-quality labels for accurate segmentation results,which often necessitate extensive labeling efforts.Here,we propose a novel approach LSWDP for high-performance real-time vessel segmentation that utilizes low-quality pseudo-labels for nonmatched training without relying on a substantial number of intricate labels and image pairing.Furthermore,we demonstrate that our method is more robust and effective in mitigating performance degradation than traditional segmentation approaches on diverse style data sets,even when confronted with unfamiliar data.Importantly,the dice similarity coefficient exceeded 85%in a rat experiment.Our study has the potential to efficiently segment and evaluate blood vessels in both normal and disease situations.This would greatly benefit future research in life and medicine.