The surrounding geological conditions and supporting structures of underground engineering are often updated during construction,and these updates require repeated numerical modeling.To improve the numerical modeling ...The surrounding geological conditions and supporting structures of underground engineering are often updated during construction,and these updates require repeated numerical modeling.To improve the numerical modeling efficiency of underground engineering,a modularized and parametric modeling cloud server is developed by using Python codes.The basic framework of the cloud server is as follows:input the modeling parameters into the web platform,implement Rhino software and FLAC3D software to model and run simulations in the cloud server,and return the simulation results to the web platform.The modeling program can automatically generate instructions that can run the modeling process in Rhino based on the input modeling parameters.The main modules of the modeling program include modeling the 3D geological structures,the underground engineering structures,and the supporting structures as well as meshing the geometric models.In particular,various cross-sections of underground caverns are crafted as parametricmodules in themodeling program.Themodularized and parametric modeling program is used for a finite element simulation of the underground powerhouse of the Shuangjiangkou Hydropower Station.This complicatedmodel is rapidly generated for the simulation,and the simulation results are reasonable.Thus,this modularized and parametric modeling program is applicable for three-dimensional finite element simulations and analyses.展开更多
A reasonable evaluation of unloading deformation characteristics is of great significance for the effective analysis of deformation and stability of surrounding rocks after underground excavation.In this study,the dam...A reasonable evaluation of unloading deformation characteristics is of great significance for the effective analysis of deformation and stability of surrounding rocks after underground excavation.In this study,the damage-controlled cyclic triaxial loading tests were conducted to investigate the pore compaction mechanism and its influences on the unloading deformation behavior of red sandstone,including Young’s modulus,Poisson’s ratio,volumetric strain,and irreversible strain.The experimental results show that the increases of volumetric and irreversible strains of rocks can be attributed to the compaction mechanism,which almost dominates the entire pre-peak deformation process.The unloading deformation consists of the reversible linear and nonlinear strains,and the irreversible strain under the influence of the porous grain structure.The pre-peak Young’s modulus tends to increase and then decrease due to the influence of the unloading irreversible strain.However,it hardly changes with the increasing volumetric strain compaction under the influence of reversible nonlinear strain.Instead,the initial unloading tangent modulus is highly related to the volumetric strain,and clearly reflects the compaction state of red sandstone.Furthermore,both the reversible nonlinear and irreversible unloading deformations are independent of confining pressure.This study is beneficial for the theoretical modeling and prediction of cyclic unloading deformation behavior of red sandstone.展开更多
Injecting carbon dioxide CO_(2)into a coal seam is an important way to improve coalbed methane recovery and to store geological carbon.The fracture mechanical characteristics of bituminous coal determine the propagati...Injecting carbon dioxide CO_(2)into a coal seam is an important way to improve coalbed methane recovery and to store geological carbon.The fracture mechanical characteristics of bituminous coal determine the propagation and evolution of cracks,which directly affect CO_(2)storage in coal seams and the efficiency of resource recovery.This study applied CO_(2)adsorption and three-point bending fracture experiments using bituminous coal samples in a gaseous state(4 MPa),subcritical state(6 MPa),and supercritical state(8 and 12 MPa)to investigate the influence of CO_(2)state and anisotropy on the fracture-related mechanical response of bituminous coal.The results show that the change in mechanical properties caused by CO_(2)adsorption is CO_(2)state-dependent.The supercritical CO_(2)adsorption at 8 MPa causes the largest decrease in the mode-I fracture toughness(KIC),which is 63.6%lower than the toughness before CO_(2)adsorption.The instability characteristics of bituminous coal show the transformation trend of“sudden-gradual-sudden fracture”.With or without CO_(2)adsorption,the order of the KIC associated with three types of bituminous coal specimens is crack-divider type>crack-arrester type>crack-short transverse type.Phenomenologically,the fracture toughness of bituminous coal is positively correlated with its specific surface area and total pore volume;the toughness is negatively correlated with its average pore size.展开更多
The continuous progress in N_(2)^(+) lasing recently stimulates a great deal of interest in nonlinear and quantum optics of molecular ions,while a complete description of the ionic polarization is still lacking to dat...The continuous progress in N_(2)^(+) lasing recently stimulates a great deal of interest in nonlinear and quantum optics of molecular ions,while a complete description of the ionic polarization is still lacking to date.In this work,we are dedicated to constructing the fundamental ionic polarization theory where several ubiquitous strong-field processes including ionization,electronic couplings and molecular alignment jointly determine the spatial arrangement of ions.With the model,the elusive polarization of N_(2)^(+) lasing can be well interpreted.Our results show that the different electronic transition rules for strong-field ionization and resonant couplings result in peculiar population distributions of various electronic states of N_(2)^(+) in space.Meanwhile,the spatial nonuniformity of population distribution can be aggravated or mitigated during field-free evolutions of coherent molecular rotational wave packets.Furthermore,when a follow-up resonant seed pulse interacts with the prepared ionic system,the anisotropic quantum coherence determining the polarization of subsequent N_(2)^(+) lasing can be established.The qualitative agreement between experiments and simulations confirms the validity of the proposed model.The findings provide critical insights into the polarization and radiation mechanisms of molecular ions constructed via ultrafast laser pulses.展开更多
Balanced reciprocal translocation is one of the most common chromosome abnormalities,with an incidence of approximately 1in every 500 newborns(Mackie Ogilvie and Scriven,2002).Most balanced reciprocal translocation ca...Balanced reciprocal translocation is one of the most common chromosome abnormalities,with an incidence of approximately 1in every 500 newborns(Mackie Ogilvie and Scriven,2002).Most balanced reciprocal translocation carriers have no observable phenotype because there is no loss or gain of genetic material(Ogilvie et al.,2001).However,the carriers have a risk of infertility.展开更多
Remote or standoff detection of greenhouse gases,air pollutants,and biological agents with innovative ultrafast laser technology attracts growing interests in recent years.Hybrid femtosecond/picosecond coherent Raman ...Remote or standoff detection of greenhouse gases,air pollutants,and biological agents with innovative ultrafast laser technology attracts growing interests in recent years.Hybrid femtosecond/picosecond coherent Raman spectroscopy is considered as one of the most versatile techniques due to its great advantages in terms of detection sensitivity and chemical specificity.However,the simultaneous requirement for the femtosecond pump and the picosecond probe increases the complexity of optical system.Herein,we demonstrate that air lasing naturally created inside a filament can serve as an ideal light source to probe Raman coherence excited by the femtosecond pump,producing coherent Raman signal with molecular vibrational signatures.The combination of pulse self-compression effect and air lasing action during filamentation improves Raman excitation efficiency and greatly simplifies the experimental setup.The air-lasing-assisted Raman spectroscopy was applied to quantitatively detect greenhouse gases mixed in air,and it was found that the minimum detectable concentrations of CO_(2) and SF_(6) can reach 0.1%and 0.03%,respectively.The ingenious designs,especially the optimization of pump-seed delay and the choice of perpendicular polarization,ensure a high detection sensitivity and signal stability.Moreover,it is demonstrated that this method can be used for simultaneously measuring CO_(2) and SF_(6) gases and distinguishing ^(12)CO_(2) and ^(13)CO_(2).The developed scheme provides a new route for high-sensitivity standoff detection and combustion diagnosis.展开更多
Ultrafast extreme ultraviolet (XUV) transient absorption spectroscopy measures the time- and frequencydependent light losses after light–matter interactions. In the linear region, the matter response to an XUV light ...Ultrafast extreme ultraviolet (XUV) transient absorption spectroscopy measures the time- and frequencydependent light losses after light–matter interactions. In the linear region, the matter response to an XUV light field is usually determined by the complex refractive index ̃n. The absorption signal is directly related to the imaginary part of ̃n, namely, the absorption index. The real part of ̃n refers to the real refractive index, which describes the chromatic dispersion of an optical material. However, the real refractive index information is usually not available in conventional absorption experiments. Here, we investigate the refractive index line shape in ultrafast XUV transient absorption spectroscopy by using a scheme that the XUV pulse traverses the target gas jet off-center. The jet has a density gradient in the direction perpendicular to the gas injection direction, which induces deflection on the XUV radiation. Our experimental and theoretical results show that the shape of the frequency-dependent XUV deflection spectra reproduces the refractive index line profile. A typical dispersive refractive index line shape is measured for a single-peak absorption;an additional shoulder structure appears for a doublet absorption.Moreover, the refractive index line shape is controlled by introducing a later-arrived near-infrared pulse to modify the phase of the XUV free induction decay, resulting in different XUV deflection spectra. The results promote our understanding of matter-induced absorption and deflection in ultrafast XUV spectroscopy.展开更多
We report on an experimental investigation on the dynamic decoherence process of molecular rotational wavepackets during femtosecond laser filamentation based on time-dependent mean wavelength shifts of a weak probe p...We report on an experimental investigation on the dynamic decoherence process of molecular rotational wavepackets during femtosecond laser filamentation based on time-dependent mean wavelength shifts of a weak probe pulse. Details of periodic revival structures of transient alignment can be readily obtained from the measured shifted spectra due to the periodic modulation of the molecular refractive index. Using the method, we measured decoherence lifetimes of molecular rotational wavepackets in N2and O2under different experimental conditions. Our results indicate that decoherence lifetimes of molecular rotational wavepackets are primarily determined by the relative population of rotational states in the wave packet and intermolecular collisions,rather than the focusing intensity.展开更多
V-shaped breakouts,which may appear in underground opening during excavation,are the results of two different failure mechanisms:tensile spalling and shear fracturing.This study uses discrete elements in exploring the...V-shaped breakouts,which may appear in underground opening during excavation,are the results of two different failure mechanisms:tensile spalling and shear fracturing.This study uses discrete elements in exploring the conditions that would lead to different breakout mechanisms under plane strain conditions.The test tunnel of the Mine-by Experiment in Lac du Bonnet granite batholith is adopted as the base problem.In order to carry out the study,some fundamental issues need to be addressed.First,an exponential softening bond that enables the incorporation of fracture energy is adopted.In order to obtain a reasonable ratio between the uniaxial compressive strength,rc,and the uniaxial tensile strength,rt,discrete disc particles are tied together to form an irregular shape clump as the basic discrete element.This effort is supported by a successful reproducing of test results from Lac du Bonnet granite in DEM modeling.The issue of sensitivity of discrete particle size on results is examined.The reduction of strength with increase in specimen size is also modeled.After the calibration work is completed,the Mine-by tunnel behavior is studied.Finally,this study shows that a reduction in rc/rt ratio,under the same setup,would cause the failure mechanism to transit from tensile spalling to shear fracturing in V-shaped breakouts.展开更多
We experimentally investigate the generation of above-threshold harmonics completely from argon atoms on an excited state using mid-infrared femtosecond laser pulses. The highly nonlinear dependences of the observed s...We experimentally investigate the generation of above-threshold harmonics completely from argon atoms on an excited state using mid-infrared femtosecond laser pulses. The highly nonlinear dependences of the observed signal on the pulse energy and polarization of the probe laser pulses indicate its nonperturbative characteristic.展开更多
基金The Construction S&T Project of the Department of Transportation of Sichuan Province(Grant No.2023A02)the National Natural Science Foundation of China(No.52109135).
文摘The surrounding geological conditions and supporting structures of underground engineering are often updated during construction,and these updates require repeated numerical modeling.To improve the numerical modeling efficiency of underground engineering,a modularized and parametric modeling cloud server is developed by using Python codes.The basic framework of the cloud server is as follows:input the modeling parameters into the web platform,implement Rhino software and FLAC3D software to model and run simulations in the cloud server,and return the simulation results to the web platform.The modeling program can automatically generate instructions that can run the modeling process in Rhino based on the input modeling parameters.The main modules of the modeling program include modeling the 3D geological structures,the underground engineering structures,and the supporting structures as well as meshing the geometric models.In particular,various cross-sections of underground caverns are crafted as parametricmodules in themodeling program.Themodularized and parametric modeling program is used for a finite element simulation of the underground powerhouse of the Shuangjiangkou Hydropower Station.This complicatedmodel is rapidly generated for the simulation,and the simulation results are reasonable.Thus,this modularized and parametric modeling program is applicable for three-dimensional finite element simulations and analyses.
基金supported by the National Natural Science Foundation of China(Grant No.52109135)the Key R&D Projects of Sichuan Province,China(Grant No.2022YFSY0007)the Postdoctoral Research Foundation of China(Grant No.2019M653402).
文摘A reasonable evaluation of unloading deformation characteristics is of great significance for the effective analysis of deformation and stability of surrounding rocks after underground excavation.In this study,the damage-controlled cyclic triaxial loading tests were conducted to investigate the pore compaction mechanism and its influences on the unloading deformation behavior of red sandstone,including Young’s modulus,Poisson’s ratio,volumetric strain,and irreversible strain.The experimental results show that the increases of volumetric and irreversible strains of rocks can be attributed to the compaction mechanism,which almost dominates the entire pre-peak deformation process.The unloading deformation consists of the reversible linear and nonlinear strains,and the irreversible strain under the influence of the porous grain structure.The pre-peak Young’s modulus tends to increase and then decrease due to the influence of the unloading irreversible strain.However,it hardly changes with the increasing volumetric strain compaction under the influence of reversible nonlinear strain.Instead,the initial unloading tangent modulus is highly related to the volumetric strain,and clearly reflects the compaction state of red sandstone.Furthermore,both the reversible nonlinear and irreversible unloading deformations are independent of confining pressure.This study is beneficial for the theoretical modeling and prediction of cyclic unloading deformation behavior of red sandstone.
基金Youth Program of National Natural Science Foundation of China(Grant No.51904195)the School Fund of Taiyuan University of Technology and Science(No.20182008).
文摘Injecting carbon dioxide CO_(2)into a coal seam is an important way to improve coalbed methane recovery and to store geological carbon.The fracture mechanical characteristics of bituminous coal determine the propagation and evolution of cracks,which directly affect CO_(2)storage in coal seams and the efficiency of resource recovery.This study applied CO_(2)adsorption and three-point bending fracture experiments using bituminous coal samples in a gaseous state(4 MPa),subcritical state(6 MPa),and supercritical state(8 and 12 MPa)to investigate the influence of CO_(2)state and anisotropy on the fracture-related mechanical response of bituminous coal.The results show that the change in mechanical properties caused by CO_(2)adsorption is CO_(2)state-dependent.The supercritical CO_(2)adsorption at 8 MPa causes the largest decrease in the mode-I fracture toughness(KIC),which is 63.6%lower than the toughness before CO_(2)adsorption.The instability characteristics of bituminous coal show the transformation trend of“sudden-gradual-sudden fracture”.With or without CO_(2)adsorption,the order of the KIC associated with three types of bituminous coal specimens is crack-divider type>crack-arrester type>crack-short transverse type.Phenomenologically,the fracture toughness of bituminous coal is positively correlated with its specific surface area and total pore volume;the toughness is negatively correlated with its average pore size.
基金supported by the National Key Research and Development Program of China(Grant No.2019YFA0307703)the National Natural Science Foundation of China(Grant Nos.12074063,12064009,12264003,and12264002)the Jiangxi Provincial Natural Science Foundation(Grant Nos.20232ACB211007,20212BAB211008,and 20232BAB201041)。
文摘The continuous progress in N_(2)^(+) lasing recently stimulates a great deal of interest in nonlinear and quantum optics of molecular ions,while a complete description of the ionic polarization is still lacking to date.In this work,we are dedicated to constructing the fundamental ionic polarization theory where several ubiquitous strong-field processes including ionization,electronic couplings and molecular alignment jointly determine the spatial arrangement of ions.With the model,the elusive polarization of N_(2)^(+) lasing can be well interpreted.Our results show that the different electronic transition rules for strong-field ionization and resonant couplings result in peculiar population distributions of various electronic states of N_(2)^(+) in space.Meanwhile,the spatial nonuniformity of population distribution can be aggravated or mitigated during field-free evolutions of coherent molecular rotational wave packets.Furthermore,when a follow-up resonant seed pulse interacts with the prepared ionic system,the anisotropic quantum coherence determining the polarization of subsequent N_(2)^(+) lasing can be established.The qualitative agreement between experiments and simulations confirms the validity of the proposed model.The findings provide critical insights into the polarization and radiation mechanisms of molecular ions constructed via ultrafast laser pulses.
基金supported by the National Key Research and Development Program of China(2018YFC1004900 and 2018YFC1003100)Natural Science Foundation of Shandong Province(ZR2018PH006 and ZR2018MC014)Key Research and Development Program of Shandong Province(2017G006035)
文摘Balanced reciprocal translocation is one of the most common chromosome abnormalities,with an incidence of approximately 1in every 500 newborns(Mackie Ogilvie and Scriven,2002).Most balanced reciprocal translocation carriers have no observable phenotype because there is no loss or gain of genetic material(Ogilvie et al.,2001).However,the carriers have a risk of infertility.
基金supported by the National Natural Science Foundation of China(11822410,12034013,12074063)Key Research Program of Frontier Sciences of Chinese Academy of Sciences(QYZDJ-SSW-SLH010)+2 种基金Program of Shanghai Academic Research Leader(20XD1424200)Shanghai Municipal Science and Technology Major Project(2019SHZDZX01)Youth Innovation Promotion Association of CAS(2018284).
文摘Remote or standoff detection of greenhouse gases,air pollutants,and biological agents with innovative ultrafast laser technology attracts growing interests in recent years.Hybrid femtosecond/picosecond coherent Raman spectroscopy is considered as one of the most versatile techniques due to its great advantages in terms of detection sensitivity and chemical specificity.However,the simultaneous requirement for the femtosecond pump and the picosecond probe increases the complexity of optical system.Herein,we demonstrate that air lasing naturally created inside a filament can serve as an ideal light source to probe Raman coherence excited by the femtosecond pump,producing coherent Raman signal with molecular vibrational signatures.The combination of pulse self-compression effect and air lasing action during filamentation improves Raman excitation efficiency and greatly simplifies the experimental setup.The air-lasing-assisted Raman spectroscopy was applied to quantitatively detect greenhouse gases mixed in air,and it was found that the minimum detectable concentrations of CO_(2) and SF_(6) can reach 0.1%and 0.03%,respectively.The ingenious designs,especially the optimization of pump-seed delay and the choice of perpendicular polarization,ensure a high detection sensitivity and signal stability.Moreover,it is demonstrated that this method can be used for simultaneously measuring CO_(2) and SF_(6) gases and distinguishing ^(12)CO_(2) and ^(13)CO_(2).The developed scheme provides a new route for high-sensitivity standoff detection and combustion diagnosis.
基金support of the Joint Centre for Extreme Photonics.Funding:This work is supported by the start-up grant of ShanghaiTech University,Double First-Class Initiative Fund of ShanghaiTech University,Shanghai Rising-Star Program(22QA1406200)National Natural Science Foundation of China(12274297,92250303)+7 种基金Shanghai Science and Technology Program(21511105000)NSERC Discovery Grant program(RGPIN-327147-2012)by the U.S.Army Research Office through Award W911NF-14-1-0383Part of this research used Beamline 03U of the Shanghai Synchrotron Radiation Facilitysupported by the ME2 project under contract no.11227902the National Natural Science Foundation of China.Y.F.and C.J.are supported by the National Natural Science Foundation of China(12274230,91950102,and 11834004)Funding of NJUST(TSXK2022D005)H.X.is supported by the National Natural Science Foundation of China(12074063 and 12264003)。
文摘Ultrafast extreme ultraviolet (XUV) transient absorption spectroscopy measures the time- and frequencydependent light losses after light–matter interactions. In the linear region, the matter response to an XUV light field is usually determined by the complex refractive index ̃n. The absorption signal is directly related to the imaginary part of ̃n, namely, the absorption index. The real part of ̃n refers to the real refractive index, which describes the chromatic dispersion of an optical material. However, the real refractive index information is usually not available in conventional absorption experiments. Here, we investigate the refractive index line shape in ultrafast XUV transient absorption spectroscopy by using a scheme that the XUV pulse traverses the target gas jet off-center. The jet has a density gradient in the direction perpendicular to the gas injection direction, which induces deflection on the XUV radiation. Our experimental and theoretical results show that the shape of the frequency-dependent XUV deflection spectra reproduces the refractive index line profile. A typical dispersive refractive index line shape is measured for a single-peak absorption;an additional shoulder structure appears for a doublet absorption.Moreover, the refractive index line shape is controlled by introducing a later-arrived near-infrared pulse to modify the phase of the XUV free induction decay, resulting in different XUV deflection spectra. The results promote our understanding of matter-induced absorption and deflection in ultrafast XUV spectroscopy.
基金supported by the National Basic Research Program of China(No.2014CB921303)the National Natural Science Foundation of China(Nos.61575211,11674340,61405220,11404357,61605227,61705034,and 11704066)+5 种基金the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDB16000000)the Key Research Program of Frontier Sciences,Chinese Academy of Sciences(No.QYZDJ-SSW-SLH010)the Shanghai Yangfan Program(No.16YF1412700)the Natural Science Foundation of Jiangxi Province(No.20171BAB211007)the Science and Technology Project of Jiangxi Provincial Education Department(Nos.GJJ160587 and GJJ160576)the Shanghai Rising-Star Program(No.17QA1404600)
文摘We report on an experimental investigation on the dynamic decoherence process of molecular rotational wavepackets during femtosecond laser filamentation based on time-dependent mean wavelength shifts of a weak probe pulse. Details of periodic revival structures of transient alignment can be readily obtained from the measured shifted spectra due to the periodic modulation of the molecular refractive index. Using the method, we measured decoherence lifetimes of molecular rotational wavepackets in N2and O2under different experimental conditions. Our results indicate that decoherence lifetimes of molecular rotational wavepackets are primarily determined by the relative population of rotational states in the wave packet and intermolecular collisions,rather than the focusing intensity.
基金The authors would like to acknowledge the financial support of China Scholarship Council for study in the United States,and the accommodation provided by the Department of Civil and Environmental Engineering,University of Pittsburgh.The authors would also acknowledge the funding of National Key Research and Development Program of China(2017YFC1501104)National Natural Science Foundation of China(51079092).
文摘V-shaped breakouts,which may appear in underground opening during excavation,are the results of two different failure mechanisms:tensile spalling and shear fracturing.This study uses discrete elements in exploring the conditions that would lead to different breakout mechanisms under plane strain conditions.The test tunnel of the Mine-by Experiment in Lac du Bonnet granite batholith is adopted as the base problem.In order to carry out the study,some fundamental issues need to be addressed.First,an exponential softening bond that enables the incorporation of fracture energy is adopted.In order to obtain a reasonable ratio between the uniaxial compressive strength,rc,and the uniaxial tensile strength,rt,discrete disc particles are tied together to form an irregular shape clump as the basic discrete element.This effort is supported by a successful reproducing of test results from Lac du Bonnet granite in DEM modeling.The issue of sensitivity of discrete particle size on results is examined.The reduction of strength with increase in specimen size is also modeled.After the calibration work is completed,the Mine-by tunnel behavior is studied.Finally,this study shows that a reduction in rc/rt ratio,under the same setup,would cause the failure mechanism to transit from tensile spalling to shear fracturing in V-shaped breakouts.
基金supported by the National Basic Research Program of China (No. 2014CB921300)the National Natural Science Foundation of China (Nos. 11127901, 11134010, 61575211, 11304330, 11404357, 61405220, 61605227, and 61705034)the Shanghai ‘Yang Fan’ Program (Nos. 14YF1406100 and 16YF1412700)
文摘We experimentally investigate the generation of above-threshold harmonics completely from argon atoms on an excited state using mid-infrared femtosecond laser pulses. The highly nonlinear dependences of the observed signal on the pulse energy and polarization of the probe laser pulses indicate its nonperturbative characteristic.