期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
d-d Orbital coupling induced by crystal-phase engineering assists acetonitrile electroreduction to ethylamine
1
作者 honggang huang Yao Chen +7 位作者 Hui Fu Cun Chen Hanjun Li Zhe Zhang Feili Lai Shuxing Bai Nan Zhang Tianxi Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期216-225,I0006,共11页
The d-d orbital coupling induced by crystal-phase engineering can effectively adjust the electronic structure of electrocatalysts,thus showing significant catalytic performance,while it has been rarely explored in ele... The d-d orbital coupling induced by crystal-phase engineering can effectively adjust the electronic structure of electrocatalysts,thus showing significant catalytic performance,while it has been rarely explored in electrochemical acetonitrile reduction reaction(ARR)to date.Herein,we successfully realize the structural transformation of Pd Cu metallic aerogels(MAs)from face-centered cubic(FCC)to body-centered cubic(BCC)through annealing treatment.Specifically,the BCC Pd Cu MAs exhibit excellent ARR performance with high ethylamine selectivity of 90.91%,Faradaic efficiency of 88.60%,yield rate of 316.0 mmol h^(-1)g^(-1)_(Pd+Cu)and long-term stability for consecutive electrolysis within 20 h at-0.55 V vs.reversible hydrogen electrode,outperforming than those of FCC Pd Cu MAs.Under the membrane electrode assembly system,BCC Pd Cu MAs also demonstrate excellent ethylamine yield rate of 389.5 mmol h^(-1)g^(-1)_(Pd+Cu).Density functional theory calculation reveals that the d-d orbital coupling in BCC Pd Cu MAs results in an evident correlation effect for the interaction of Pd and Cu sites,which boosts up the Cu sites electronic activities to enhance ARR performance.Our work opens a new route to develop efficient ARR electrocatalysts from the perspective of crystalline structure transformation. 展开更多
关键词 d-d Orbital coupling Crystal-phase engineering Metallic aerogels Acetonitrile electroreduction reaction ETHYLAMINE
在线阅读 下载PDF
Modulating Pd e_(g) orbital occupancy in Pd-Au metallic aerogels for efficient carbon dioxide reduction
2
作者 Yao Chen Juan Wang +8 位作者 Tingjie Mao Cun Chen Hanjun Li honggang huang Hui Fu Feili Lai Jiadong Chen Nan Zhang Tianxi Liu 《Journal of Energy Chemistry》 SCIE EI CSCD 2023年第12期98-104,I0004,共8页
The electronic structure of electrocatalysts plays a critical role in energy conversion,whereas for an efficient catalyst,it is challenging to modulate the orbitals.Herein,we present a new strategy to modulate the e_(... The electronic structure of electrocatalysts plays a critical role in energy conversion,whereas for an efficient catalyst,it is challenging to modulate the orbitals.Herein,we present a new strategy to modulate the e_(g) orbital occupancy of Pd by constructing composition-controllable Pd-Au metallic aerogels(MAs),optimizing the d-band center of Pd to achieve excellent performance for electrochemical carbon dioxide reduction reaction(CO_(2)RR).Specifically,Pd_(1)Au_(2) MAs achieve almost 100% Faraday efficiency(FE) of CO in the range of-0.40 to-0.80 V vs.reversible hydrogen electrode(RHE),as well as the long-term stability,being one of the best Pd-based materials for CO_(2)RR.The X-ray photoelectron spectroscopy(XPS) results and density functional theory(DFT) calculations demonstrate that the introduction of Au modulates the Pd e_(g) orbital occupancy,which significantly weakens *CO adsorption on Pd,reduces the CO_(2)RR energy barrier and consequently improves the electrocatalytic activity and stability for long-term applications.Our work highlights a new strategy for designing efficient electrocatalysts for CO_(2)RR and beyond. 展开更多
关键词 PD Carbon dioxide reduction Alloy AEROGELS Orbital occupancy
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部