期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
UV irradiation-H2O2 system as an effective combined depolymerization technique to produce oligosaccharides from chitosan
1
作者 Seyed Ahmad Ayati Najafabadi hengameh honarkar +3 位作者 Majid Moghadam Valiollah Mirkhani Mohammadreza Tahriri Lobat Tayebi 《Bio-Design and Manufacturing》 2018年第1期62-68,共7页
UV irradiation hydrogen peroxide (H202) system is used as an effective, easy and low-cost combined depolymerization technique to produce oligosaccharides from chitosan. UV-Vis spectroscopic studies explained that wi... UV irradiation hydrogen peroxide (H202) system is used as an effective, easy and low-cost combined depolymerization technique to produce oligosaccharides from chitosan. UV-Vis spectroscopic studies explained that with increasing treatment time, the absorption of the depolymerized chitosan solution has increased, indicating the increase in the carbonyl and amino groups in their structure. Fourier transform infrared spectroscopy and nuclear magnetic resonance (1H NMR) analysis showed that the 1,4-β-D-glucoside linkages of chitosan are degraded without important changes in chemical structure of decomposed samples. X-ray diffraction patterns verified the polymerization of chitosan to produce oligomers, changing in structure from crystalline to amorphous. Viscosity-average molecular weight measurements of fragmented chitosan samples and MarkHouwink equation are used to demonstrate the efficiency of this depolymerization method. Finally, the obtained results ascertained that this combined method could produce water soluble chitosan with significant efficiency and no essential change in its chemical structure.UV irradiation hydrogen peroxide (H202) system is used as an effective, easy and low-cost combined depolymerization technique to produce oligosaccharides from chitosan. UV-Vis spectroscopic studies explained that with increasing treatment time, the absorption of the depolymerized chitosan solution has increased, indicating the increase in the carbonyl and amino groups in their structure. Fourier transform infrared spectroscopy and nuclear magnetic resonance (1H NMR) analysis showed that the 1,4-β-D-glucoside linkages of chitosan are degraded without important changes in chemical structure of decomposed samples. X-ray diffraction patterns verified the polymerization of chitosan to produce oligomers, changing in structure from crystalline to amorphous. Viscosity-average molecular weight measurements of fragmented chitosan samples and MarkHouwink equation are used to demonstrate the efficiency of this depolymerization method. Finally, the obtained results ascertained that this combined method could produce water soluble chitosan with significant efficiency and no essential change in its chemical structure. 展开更多
关键词 CHITOSAN DEPOLYMERIZATION Ultraviolet irradiation Hydrogen peroxide OLIGOSACCHARIDES
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部