期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Approximating Nash Equilibrium in Day-ahead Electricity Market Bidding with Multi-agent Deep Reinforcement Learning 被引量:10
1
作者 Yan Du Fangxing Li +1 位作者 helia zandi Yaosuo Xue 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2021年第3期534-544,共11页
In this paper,a day-ahead electricity market bidding problem with multiple strategic generation company(GEN-CO)bidders is studied.The problem is formulated as a Markov game model,where GENCO bidders interact with each... In this paper,a day-ahead electricity market bidding problem with multiple strategic generation company(GEN-CO)bidders is studied.The problem is formulated as a Markov game model,where GENCO bidders interact with each other to develop their optimal day-ahead bidding strategies.Considering unobservable information in the problem,a model-free and data-driven approach,known as multi-agent deep deterministic policy gradient(MADDPG),is applied for approximating the Nash equilibrium(NE)in the above Markov game.The MAD-DPG algorithm has the advantage of generalization due to the automatic feature extraction ability of the deep neural networks.The algorithm is tested on an IEEE 30-bus system with three competitive GENCO bidders in both an uncongested case and a congested case.Comparisons with a truthful bidding strategy and state-of-the-art deep reinforcement learning methods including deep Q network and deep deterministic policy gradient(DDPG)demonstrate that the applied MADDPG algorithm can find a superior bidding strategy for all the market participants with increased profit gains.In addition,the comparison with a conventional-model-based method shows that the MADDPG algorithm has higher computational efficiency,which is feasible for real-world applications. 展开更多
关键词 Bidding strategy day-ahead electricity market deep reinforcement learning Markov game multi-agent deterministic policy gradient(MADDPG) Nash equilibrium(NE)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部