Unstable environments intensify the frequency of extreme disasters.Long-term climate changes can lead to agricultural and ecological degradation that threatens population sustainability.To better understand past clima...Unstable environments intensify the frequency of extreme disasters.Long-term climate changes can lead to agricultural and ecological degradation that threatens population sustainability.To better understand past climatic events and consequences,here we present a reconstruction of the self-calibrating Palmer drought severity index(scPDSI)from September to August for the desert margins of northern China,dating back to 1742.The reconstruction accounts for 42.9%of the variation of meteorological data between 1951 and 2020.Our spatial correlation analyses showed significant correlations between scPDSI,runoff,and precipitation.Over the past 279 years,the study area has undergone nine dry and eight wet periods,with the most severe climate extremes between the 1850s and 1890s.This period of prolonged drought in northeastern China coincided with the combined impacts of climatic factors and human influences,contributing to the fall of the Qing Dynasty.Analysis of periodicity and anomalies in sea surface temperatures indicate a strong association between wet and dry cycles and El Niño-Southern Oscillations.Our findings offer insights into long-term dry and wet fluctuations at the desert margins in northern China and elucidate the relationship between drought and the dynamics of civilizations.They also highlight the potential impact of extremes in climate on modern society,especially under the four projected shared socioeconomic pathways climatic scenarios,which predict worsening droughts in northern China.展开更多
Evaluating long-term changes in precipitation resources is important for accurate hydrological evaluation and forecasting,water security and rational allocation of water resources.For this purpose in the Xinjiang Haba...Evaluating long-term changes in precipitation resources is important for accurate hydrological evaluation and forecasting,water security and rational allocation of water resources.For this purpose in the Xinjiang Habahe area,tree-ring specimens were collected from Picea obovata,Larix sibirica,and Betula platyphylla to establish a tree-ring width chronology,which was used to analyse a correlation with the average temperature and precipitation per month for 1958-2016.Based on correlation coefficients for monthly temperature and precipitation with the chronology of tree-ring widths,radial tree growth was mainly restricted by precipitation,and tree-ring width chronology was significantly correlated with overall precipitation from the previous July to the next June(r=0.641,P<0.01).The above results were used to establish a transformation equation,and the overall precipitation from the previous July to the following June from 1800 to 2016 in Habahe was reconstructed after adjusted degrees of freedom,and obtain an explanatory rate of the variation up to 41.1%(40.0%).In addition to the reliability of the reconstructed values,the stability of the conversion function was determined via the“leave-one-out”method,which is commonly used in research on tree rings,and by cross-checking the conversion function with the reduced error value(RE),product mean test(t),with a sign test(ST).During the last 217 years,there were nine dry periods:1803-1829,1861-1865,1872-1885,1892-1905,1916-1923,1943-1954,1961-1966,1973-1981,and 2005-2011;and 12 wet periods:1830-1834,1836-1860,1866-1871,1886-1891,1906-1915,1925-1930,1934-1942,1955-1960,1967-1972,1982-1996,2000-2004,and 2012-2016.Comparisons of the reconstructions for neighboring regions and a spatial correlation analysis showed that the reconstructed sequence of the present precipitation data better represented the changes in precipitation in Habahe.Additionally,a power spectrum analysis revealed that precipitation over the past 217 years in Habahe Province exhibited 2-5 years of quasiperiodic variation.A power spectrum analysis and wavelet analysis indicated that El Niño-Southern Oscillation influenced the precipitation cycles.This reconstruction provides more information on high-frequency precipitation,which is an important supplement to the existing tree-ring reconstruction of precipitation in the study area.The reconstruction of regional high-resolution precipitation changes over the last several hundred years provides unique,important data for understanding regional differences in climate at the decadal-centennial scale.展开更多
Vegetation productivity on the southern edge of the Inner Mongolian Plateau,which plays a vital role in the ecological environment and in the arable and pasto-ral production in this region,can be characterized by the ...Vegetation productivity on the southern edge of the Inner Mongolian Plateau,which plays a vital role in the ecological environment and in the arable and pasto-ral production in this region,can be characterized by the NDVI(normalized difference vegetation index).However,the observed NDVI data span only the last~40 years.The growth of Pinus tabulaeformis Carr.is strongly correlated with the NDVI,making it a valuable proxy for extend-ing the length of observed NDVI datasets.In this study,we reconstructed an NDVI series for 1776–2021 for the Daqing Mountains,based on a tree-ring width chronology.The reconstructed data accounted for 55%of the variance in the observed data,and its statistical characteristics and validation indicate that the reconstruction is dependable.Spatial correlation analysis demonstrated the consistency of climate signals in central Inner Mongolia in both the arable and pastoral zones.The results of superposed epoch analysis revealed a good temporal consistency between drought and flood events and the reconstructed NDVI sequence in this region.展开更多
To fulfill the explosive growth of network capacity, fifth generation(5G) standard has captured the attention and imagination of researchers and engineers around the world. In particular, heterogeneous cloud radio acc...To fulfill the explosive growth of network capacity, fifth generation(5G) standard has captured the attention and imagination of researchers and engineers around the world. In particular, heterogeneous cloud radio access network(H-CRAN), as a promising network paradigm in 5G system, is a hot research topic in recent years. However, the densely deployment of RRHs in H-CRAN leads to downlink/uplink traffic asymmetry and severe inter-cell interference which could seriously impair the network throughput and resource utilization. To simultaneously solve these two problems, we proposed a dynamic resource allocation(DRA) scheme for H-CRAN in TDD mode. Firstly, we design a clustering algorithm to group the RRHs into different sets. Secondly, we adopt coordinated multipoint technology to eliminate the interference in each set. Finally, we formulate the joint frame structure, power and subcarrier selection problem as a mixed strategy noncooperative game. The simulation results are presented to validate the effectiveness of our proposed algorithm by compared with the existing work.展开更多
Adaptive bitrate video streaming(ABR)has become a critical technique for mobile video streaming to cope with time-varying network conditions and different user preferences.However,there are still many problems in achi...Adaptive bitrate video streaming(ABR)has become a critical technique for mobile video streaming to cope with time-varying network conditions and different user preferences.However,there are still many problems in achieving high-quality ABR video streaming over cellular networks.Mobile Edge Computing(MEC)is a promising paradigm to overcome the above problems by providing video transcoding capability and caching the ABR video streaming within the radio access network(RAN).In this paper,we propose a flexible transcoding strategy to provide viewers with low-latency video streaming services in the MEC networks under the limited storage,computing,and spectrum resources.According to the information collected from users,the MEC server acts as a controlling component to adjust the transcoding strategy flexibly based on optimizing the video caching placement strategy.Specifically,we cache the proper bitrate version of the video segments at the edge servers and select the appropriate bitrate version of the video segments to perform transcoding under jointly considering access control,resource allocation,and user preferences.We formulate this problem as a nonconvex optimization and mixed combinatorial problem.Moreover,the simulation results indicate that our proposed algorithm can ensure a low-latency viewing experience for users.展开更多
Digital twins for wide-areas(DT-WA)can model and predict the physical world with high fidelity by incorporating an artificial intelligence(AI)model.However,the AI model requires an energy-consuming updating process to...Digital twins for wide-areas(DT-WA)can model and predict the physical world with high fidelity by incorporating an artificial intelligence(AI)model.However,the AI model requires an energy-consuming updating process to keep pace with the dynamic environment,where studies are still in infancy.To reduce the updating energy,this paper proposes a distributed edge cooperation and data collection scheme.The AI model is partitioned into multiple sub-models deployed on different edge servers(ESs)co-located with access points across wide-area,to update distributively using local sensor data.To reduce the updating energy,ESs can choose to become either updating helpers or recipients of their neighboring ESs,based on sensor quantities and basic updating convergencies.Helpers would share their updated sub-model parameters with neighboring recipients,so as to reduce the latter updating workload.To minimize system energy under updating convergency and latency constraints,we further propose an algorithm to let ESs distributively optimize their cooperation identities,collect sensor data,and allocate wireless and computing resources.It comprises several constraint-release approaches,where two child optimization problems are solved,and designs a largescale multi-agent deep reinforcement learning algorithm.Simulation shows that the proposed scheme can efficiently reduce updating energy compared with the baselines.展开更多
基金supported by the National Natural Science Foundation of China(32061123008).
文摘Unstable environments intensify the frequency of extreme disasters.Long-term climate changes can lead to agricultural and ecological degradation that threatens population sustainability.To better understand past climatic events and consequences,here we present a reconstruction of the self-calibrating Palmer drought severity index(scPDSI)from September to August for the desert margins of northern China,dating back to 1742.The reconstruction accounts for 42.9%of the variation of meteorological data between 1951 and 2020.Our spatial correlation analyses showed significant correlations between scPDSI,runoff,and precipitation.Over the past 279 years,the study area has undergone nine dry and eight wet periods,with the most severe climate extremes between the 1850s and 1890s.This period of prolonged drought in northeastern China coincided with the combined impacts of climatic factors and human influences,contributing to the fall of the Qing Dynasty.Analysis of periodicity and anomalies in sea surface temperatures indicate a strong association between wet and dry cycles and El Niño-Southern Oscillations.Our findings offer insights into long-term dry and wet fluctuations at the desert margins in northern China and elucidate the relationship between drought and the dynamics of civilizations.They also highlight the potential impact of extremes in climate on modern society,especially under the four projected shared socioeconomic pathways climatic scenarios,which predict worsening droughts in northern China.
基金supported by the Natural Science Foundation of China(No.32061123008)Key Laboratory of Xinjiang Province of China(No.2022D04005)+2 种基金China Desert Weather Scientific Research Fund(Sqj2019002)Natural Science Foundation of Xinjiang Province of China(No.2021D01B118,2021D01B116)the Yunnan University Research Innovation Fund for Graduate Students(KC-22222199).
文摘Evaluating long-term changes in precipitation resources is important for accurate hydrological evaluation and forecasting,water security and rational allocation of water resources.For this purpose in the Xinjiang Habahe area,tree-ring specimens were collected from Picea obovata,Larix sibirica,and Betula platyphylla to establish a tree-ring width chronology,which was used to analyse a correlation with the average temperature and precipitation per month for 1958-2016.Based on correlation coefficients for monthly temperature and precipitation with the chronology of tree-ring widths,radial tree growth was mainly restricted by precipitation,and tree-ring width chronology was significantly correlated with overall precipitation from the previous July to the next June(r=0.641,P<0.01).The above results were used to establish a transformation equation,and the overall precipitation from the previous July to the following June from 1800 to 2016 in Habahe was reconstructed after adjusted degrees of freedom,and obtain an explanatory rate of the variation up to 41.1%(40.0%).In addition to the reliability of the reconstructed values,the stability of the conversion function was determined via the“leave-one-out”method,which is commonly used in research on tree rings,and by cross-checking the conversion function with the reduced error value(RE),product mean test(t),with a sign test(ST).During the last 217 years,there were nine dry periods:1803-1829,1861-1865,1872-1885,1892-1905,1916-1923,1943-1954,1961-1966,1973-1981,and 2005-2011;and 12 wet periods:1830-1834,1836-1860,1866-1871,1886-1891,1906-1915,1925-1930,1934-1942,1955-1960,1967-1972,1982-1996,2000-2004,and 2012-2016.Comparisons of the reconstructions for neighboring regions and a spatial correlation analysis showed that the reconstructed sequence of the present precipitation data better represented the changes in precipitation in Habahe.Additionally,a power spectrum analysis revealed that precipitation over the past 217 years in Habahe Province exhibited 2-5 years of quasiperiodic variation.A power spectrum analysis and wavelet analysis indicated that El Niño-Southern Oscillation influenced the precipitation cycles.This reconstruction provides more information on high-frequency precipitation,which is an important supplement to the existing tree-ring reconstruction of precipitation in the study area.The reconstruction of regional high-resolution precipitation changes over the last several hundred years provides unique,important data for understanding regional differences in climate at the decadal-centennial scale.
基金supported by the National Natural Science Foundation of China(32061123008).
文摘Vegetation productivity on the southern edge of the Inner Mongolian Plateau,which plays a vital role in the ecological environment and in the arable and pasto-ral production in this region,can be characterized by the NDVI(normalized difference vegetation index).However,the observed NDVI data span only the last~40 years.The growth of Pinus tabulaeformis Carr.is strongly correlated with the NDVI,making it a valuable proxy for extend-ing the length of observed NDVI datasets.In this study,we reconstructed an NDVI series for 1776–2021 for the Daqing Mountains,based on a tree-ring width chronology.The reconstructed data accounted for 55%of the variance in the observed data,and its statistical characteristics and validation indicate that the reconstruction is dependable.Spatial correlation analysis demonstrated the consistency of climate signals in central Inner Mongolia in both the arable and pastoral zones.The results of superposed epoch analysis revealed a good temporal consistency between drought and flood events and the reconstructed NDVI sequence in this region.
基金jointly supported by Project 61501052 and 61302080 of the National Natural Science Foundation of China
文摘To fulfill the explosive growth of network capacity, fifth generation(5G) standard has captured the attention and imagination of researchers and engineers around the world. In particular, heterogeneous cloud radio access network(H-CRAN), as a promising network paradigm in 5G system, is a hot research topic in recent years. However, the densely deployment of RRHs in H-CRAN leads to downlink/uplink traffic asymmetry and severe inter-cell interference which could seriously impair the network throughput and resource utilization. To simultaneously solve these two problems, we proposed a dynamic resource allocation(DRA) scheme for H-CRAN in TDD mode. Firstly, we design a clustering algorithm to group the RRHs into different sets. Secondly, we adopt coordinated multipoint technology to eliminate the interference in each set. Finally, we formulate the joint frame structure, power and subcarrier selection problem as a mixed strategy noncooperative game. The simulation results are presented to validate the effectiveness of our proposed algorithm by compared with the existing work.
基金This work was supported by National Natural Science Foundation of China(No.61771070)National Natural Science Foundation of China(No.61671088).
文摘Adaptive bitrate video streaming(ABR)has become a critical technique for mobile video streaming to cope with time-varying network conditions and different user preferences.However,there are still many problems in achieving high-quality ABR video streaming over cellular networks.Mobile Edge Computing(MEC)is a promising paradigm to overcome the above problems by providing video transcoding capability and caching the ABR video streaming within the radio access network(RAN).In this paper,we propose a flexible transcoding strategy to provide viewers with low-latency video streaming services in the MEC networks under the limited storage,computing,and spectrum resources.According to the information collected from users,the MEC server acts as a controlling component to adjust the transcoding strategy flexibly based on optimizing the video caching placement strategy.Specifically,we cache the proper bitrate version of the video segments at the edge servers and select the appropriate bitrate version of the video segments to perform transcoding under jointly considering access control,resource allocation,and user preferences.We formulate this problem as a nonconvex optimization and mixed combinatorial problem.Moreover,the simulation results indicate that our proposed algorithm can ensure a low-latency viewing experience for users.
基金supported by National Key Research and Development Program of China(2020YFB1807900).
文摘Digital twins for wide-areas(DT-WA)can model and predict the physical world with high fidelity by incorporating an artificial intelligence(AI)model.However,the AI model requires an energy-consuming updating process to keep pace with the dynamic environment,where studies are still in infancy.To reduce the updating energy,this paper proposes a distributed edge cooperation and data collection scheme.The AI model is partitioned into multiple sub-models deployed on different edge servers(ESs)co-located with access points across wide-area,to update distributively using local sensor data.To reduce the updating energy,ESs can choose to become either updating helpers or recipients of their neighboring ESs,based on sensor quantities and basic updating convergencies.Helpers would share their updated sub-model parameters with neighboring recipients,so as to reduce the latter updating workload.To minimize system energy under updating convergency and latency constraints,we further propose an algorithm to let ESs distributively optimize their cooperation identities,collect sensor data,and allocate wireless and computing resources.It comprises several constraint-release approaches,where two child optimization problems are solved,and designs a largescale multi-agent deep reinforcement learning algorithm.Simulation shows that the proposed scheme can efficiently reduce updating energy compared with the baselines.