Lead halide perovskite nanocrystals have recently demonstrated great potential as x-ray scintillators,yet they stll suffer toxicity issues,inferior light yield(LY)caused by severe self-absorption.Nontoxic bivalent eur...Lead halide perovskite nanocrystals have recently demonstrated great potential as x-ray scintillators,yet they stll suffer toxicity issues,inferior light yield(LY)caused by severe self-absorption.Nontoxic bivalent europium ions(Eu^(2+))with intrinsically efficient and self-absorption-free d-f transition are a prospective replacement for the toxic Pb^(2+).Here,we demonstrated solution-processed organic-inorganic hybrid halide BA_(10)Eul_(12)(BA denotes C_(4)H_(9)NH_(4)^(+))single crystals for the first time.展开更多
X-ray detection is crucial across various sectors,but traditional techniques face challenges such as inefficient data transmission,redundant sensing,high power consumption,and complexity.The innovative idea of a retin...X-ray detection is crucial across various sectors,but traditional techniques face challenges such as inefficient data transmission,redundant sensing,high power consumption,and complexity.The innovative idea of a retinomorphic X-ray detector shows great potential.However,its implementation has been hindered by the absence of active layers capable of both detecting X-rays and serving as memory storage.In response to this critical gap,our study integrates hybrid perovskite with hydrion-conductive organic cations to develop a groundbreaking retinomorphic X-ray detector.This novel device stands at the nexus of technological innovation,utilizing X-ray detection,memory,and preprocessing capabilities within a single hardware platform.The core mechanism underlying this innovation lies in the transport of electrons and holes within the metal halide octahedral frameworks,enabling precise X-ray detection.Concurrently,the hydrion movement through organic cations endows the device with short-term resistive memory,facilitating rapid data processing and retrieval.Notably,our retinomorphic X-ray detector boasts an array of formidable features,including reconfigurable shortterm memory,a linear response curve,and an extended retention time.In practical terms,this translates into the efficient capture of motion projections with minimal redundant data,achieving a compression ratio of 18.06%and an impressive recognition accuracy of up to 98.6%.In essence,our prototype represents a paradigm shift in X-ray detection technology.With its transformative capabilities,this retinomorphic hardware is poised to revolutionize the existing X-ray detection landscape.展开更多
Metal halide perovskites have shown great performance for various applications,including solar cells,light emitting diodes,and radiation detectors,but they still suffer from the toxicity of lead and instability.Here w...Metal halide perovskites have shown great performance for various applications,including solar cells,light emitting diodes,and radiation detectors,but they still suffer from the toxicity of lead and instability.Here we report the use of lanthanide series as trivalent metals to obtain low toxicity and highly stable double perovskites(Cs_2NaLnCl_6,Ln=Tb or Eu)with high scintillation light yield.The crystals exhibit typical f-f transitions of lanthanide cations,while Cs_2NaTbCl_6exhibits strong green photoluminescence,and Cs_2NaEuCl_6exhibits red photoluminescence.Under X-ray radiations,the light yield of Cs_2NaTbCl_6reaches46600 photons MeV^(-1),much higher than that of the commercially used(Lu,Y)_2SiO_5:Ce^(3+)crystals(LYSO,28500 photons MeV^(-1)),and previously reported lead-based perovskites(14000 photons MeV^(-1)).As a new member of lead-free perovskites,lanthanide-based double perovskites open up a new route toward radiation detections and potential medical imaging.展开更多
Multi-energy X-ray detection is sought after for a wide range of applications including medical imaging,security checking and industrial flaw inspection.Perovskite X-ray detectors are superior in terms of high sensiti...Multi-energy X-ray detection is sought after for a wide range of applications including medical imaging,security checking and industrial flaw inspection.Perovskite X-ray detectors are superior in terms of high sensitivity and low detection limit,which lays a foundation for multi-energy discrimination.However,the extended capability of the perovskite detector for multi-energy X-ray detection is challenging and has never been reported.Herein we report the design of vertical matrix perovskite X-ray detectors for multi-energy detection,based on the attenuation behavior of X-ray within the detector and machine learning algorithm.This platform is independent of the complex X-ray source components that constrain the energy discrimination capability.We show that the incident X-ray spectra could be accurately reconstructed from the conversion matrix and measured photocurrent response.Moreover,the detector could produce a set of images containing the density-graded information under single exposure,and locate the concealed position for all low-,medium-and high-density substances.Our findings suggest a new generation of X-ray detectors with features of multi-energy discrimination,density differentiation,and contrast-enhanced imaging.展开更多
Sensitive and fast detection of neutrons and gamma rays is vital for homeland security,high-energy physics,and proton therapy.Fast-neutron detectors rely on light organic scintillators,andγ-ray detectors use heavy in...Sensitive and fast detection of neutrons and gamma rays is vital for homeland security,high-energy physics,and proton therapy.Fast-neutron detectors rely on light organic scintillators,andγ-ray detectors use heavy inorganic scintillators and semiconductors.Efficient mixed-field detection using a single material is highly challenging due to their contradictory requirements.Here we report hybrid perovskites(C_(8)H_(12)N)_(2)Pb(Br_(0.95)Cl_(0.05))_(4)that combine light organic cations and heavy inorganic skeletons at a molecular level to achieve unprecedented performance for mixed-field radiation detection.High neutron absorption due to a high density of hydrogen,strong radiative recombination within the highly confined[PbX_(6)]^(4-)layer,and sub-nanometer distance between absorption sites and radiative centers,enable a light yield of 41000 photons/MeV,detection pulse width of 2.97 ns and extraordinary linearity response toward both fast neutrons andγ-rays,outperforming commonly used fast-neutron scintillators.Neutron energy spectrum,time-of-flight based fast-neutron/γ-ray discrimination and neutron yield monitoring were all successfully achieved using(C_(8)H_(12)N)_(2)Pb(Br_(0.95)Cl_(0.05))_(4)detectors.We further demonstrate the monitoring of reaction kinetics and total power of a nuclear fusion reaction.We envision that molecular hybridized scintillators open a new avenue for mixed-field radiation detection and imaging.展开更多
Metal halide perovskites(MHPs)have demonstrated excellent performances in detection of X-rays and gamma-rays.Most studies focus on improving the sensitivity of single-pixel MHP detectors.However,little work pays atten...Metal halide perovskites(MHPs)have demonstrated excellent performances in detection of X-rays and gamma-rays.Most studies focus on improving the sensitivity of single-pixel MHP detectors.However,little work pays attention to the dark current,which is crucial for the back-end circuit integration.Herein,the requirement of dark current is quantitatively evaluated as low as 10^(−9)A/cm^(2)for X-ray imagers integrated on pixel circuits.Moreover,through the semiconductor device analysis and simulation,we reveal that the main current compositions of thick perovskite X-ray detectors are the thermionic-emission current(J_(T))and the generation-recombination current(J_(g-r)).The typical observed failures of p-n junctions in thick detectors are caused by the high generation-recombination current due to the band mismatch and interface defects.This work provides a deep insight into the design of high sensitivity and low dark current perovskite X-ray detectors.展开更多
基金the National Key R&D Program of China(grant no.2021YFB3501800)the National Natural Science Foundation of China(62250003,61725401,62104077,62204092,62004076,and 62134003)+2 种基金the Postdoctoral Research Foundation of China(2022M710054)the Foundation for Innovative Research Groups of Hubei Province of China(2020CFA034)This research is also supported by the Open Project Program of Wuhan National Laboratory for Optoelectronics(no.2022WNLOKF004).
文摘Lead halide perovskite nanocrystals have recently demonstrated great potential as x-ray scintillators,yet they stll suffer toxicity issues,inferior light yield(LY)caused by severe self-absorption.Nontoxic bivalent europium ions(Eu^(2+))with intrinsically efficient and self-absorption-free d-f transition are a prospective replacement for the toxic Pb^(2+).Here,we demonstrated solution-processed organic-inorganic hybrid halide BA_(10)Eul_(12)(BA denotes C_(4)H_(9)NH_(4)^(+))single crystals for the first time.
基金supported by the National Natural Science Foundation of China(U23A20359)the Major State Basic Research Development Program of China(2021YFB3201000)+2 种基金the National Natural Science Foundation of China(62134003,623B2033,and 62074066)the Natural Science Foundation of Hubei Province(2021CFA036,2020CFA034)the Shenzhen Science and Technology Program(SGDX20230116093205009).
文摘X-ray detection is crucial across various sectors,but traditional techniques face challenges such as inefficient data transmission,redundant sensing,high power consumption,and complexity.The innovative idea of a retinomorphic X-ray detector shows great potential.However,its implementation has been hindered by the absence of active layers capable of both detecting X-rays and serving as memory storage.In response to this critical gap,our study integrates hybrid perovskite with hydrion-conductive organic cations to develop a groundbreaking retinomorphic X-ray detector.This novel device stands at the nexus of technological innovation,utilizing X-ray detection,memory,and preprocessing capabilities within a single hardware platform.The core mechanism underlying this innovation lies in the transport of electrons and holes within the metal halide octahedral frameworks,enabling precise X-ray detection.Concurrently,the hydrion movement through organic cations endows the device with short-term resistive memory,facilitating rapid data processing and retrieval.Notably,our retinomorphic X-ray detector boasts an array of formidable features,including reconfigurable shortterm memory,a linear response curve,and an extended retention time.In practical terms,this translates into the efficient capture of motion projections with minimal redundant data,achieving a compression ratio of 18.06%and an impressive recognition accuracy of up to 98.6%.In essence,our prototype represents a paradigm shift in X-ray detection technology.With its transformative capabilities,this retinomorphic hardware is poised to revolutionize the existing X-ray detection landscape.
基金supported by the Major State Basic Research Development Program of China (2016YFB0700702)the National Natural Science Foundation of China (5171101030, 51602114)+1 种基金the HUST Key Innovation Team for Interdisciplinary Promotion (2016JCTD111)the Open Fund of State Key Laboratory of Luminescence and Applications (SKLA-2016-08)
文摘Metal halide perovskites have shown great performance for various applications,including solar cells,light emitting diodes,and radiation detectors,but they still suffer from the toxicity of lead and instability.Here we report the use of lanthanide series as trivalent metals to obtain low toxicity and highly stable double perovskites(Cs_2NaLnCl_6,Ln=Tb or Eu)with high scintillation light yield.The crystals exhibit typical f-f transitions of lanthanide cations,while Cs_2NaTbCl_6exhibits strong green photoluminescence,and Cs_2NaEuCl_6exhibits red photoluminescence.Under X-ray radiations,the light yield of Cs_2NaTbCl_6reaches46600 photons MeV^(-1),much higher than that of the commercially used(Lu,Y)_2SiO_5:Ce^(3+)crystals(LYSO,28500 photons MeV^(-1)),and previously reported lead-based perovskites(14000 photons MeV^(-1)).As a new member of lead-free perovskites,lanthanide-based double perovskites open up a new route toward radiation detections and potential medical imaging.
基金financially supported by the Major State Basic Research Development Program of China(2021YFB3201000)the National Natural Science Foundation of China(62074066,62134003,and 12050005)+2 种基金the Fund for Innovative Research Groups of the Natural Science Foundation of Hubei Province(2021CFA036,2020CFA034)Shenzhen Basic Research Program(JCYJ20200109115212546)the Fundamental Research Funds for the Central Universities HUST(2020JYCXJJ073)。
文摘Multi-energy X-ray detection is sought after for a wide range of applications including medical imaging,security checking and industrial flaw inspection.Perovskite X-ray detectors are superior in terms of high sensitivity and low detection limit,which lays a foundation for multi-energy discrimination.However,the extended capability of the perovskite detector for multi-energy X-ray detection is challenging and has never been reported.Herein we report the design of vertical matrix perovskite X-ray detectors for multi-energy detection,based on the attenuation behavior of X-ray within the detector and machine learning algorithm.This platform is independent of the complex X-ray source components that constrain the energy discrimination capability.We show that the incident X-ray spectra could be accurately reconstructed from the conversion matrix and measured photocurrent response.Moreover,the detector could produce a set of images containing the density-graded information under single exposure,and locate the concealed position for all low-,medium-and high-density substances.Our findings suggest a new generation of X-ray detectors with features of multi-energy discrimination,density differentiation,and contrast-enhanced imaging.
基金China Postdoctoral Science Foundation,Grant/Award Number:2021T140234Fund for the Natural Science Foundation of Hubei Province,Grant/Award Numbers:2020CFA034,2021CFA036+3 种基金HCP Program for HUSTInnovation Fund of WNLOMajor State Basic Research Development Program of China,Grant/Award Numbers:2018YFA0703200,2021YFB3201000National Natural。
文摘Sensitive and fast detection of neutrons and gamma rays is vital for homeland security,high-energy physics,and proton therapy.Fast-neutron detectors rely on light organic scintillators,andγ-ray detectors use heavy inorganic scintillators and semiconductors.Efficient mixed-field detection using a single material is highly challenging due to their contradictory requirements.Here we report hybrid perovskites(C_(8)H_(12)N)_(2)Pb(Br_(0.95)Cl_(0.05))_(4)that combine light organic cations and heavy inorganic skeletons at a molecular level to achieve unprecedented performance for mixed-field radiation detection.High neutron absorption due to a high density of hydrogen,strong radiative recombination within the highly confined[PbX_(6)]^(4-)layer,and sub-nanometer distance between absorption sites and radiative centers,enable a light yield of 41000 photons/MeV,detection pulse width of 2.97 ns and extraordinary linearity response toward both fast neutrons andγ-rays,outperforming commonly used fast-neutron scintillators.Neutron energy spectrum,time-of-flight based fast-neutron/γ-ray discrimination and neutron yield monitoring were all successfully achieved using(C_(8)H_(12)N)_(2)Pb(Br_(0.95)Cl_(0.05))_(4)detectors.We further demonstrate the monitoring of reaction kinetics and total power of a nuclear fusion reaction.We envision that molecular hybridized scintillators open a new avenue for mixed-field radiation detection and imaging.
基金supported by the Major State Basic Research Development Program of China(No.2021YFB3201000)the National Natural Science Foundation of China(Grant Nos.62074066,62134003,and 12050005)+2 种基金the Fund for Innovative Research Groups of the Natural Science Foundation of Hubei Province(Nos.2021CFA036 and 2020CFA034)Shenzhen Basic Research Program(No.JCYJ20200109115212546)the Fundamental Research Funds for the Central Universities.
文摘Metal halide perovskites(MHPs)have demonstrated excellent performances in detection of X-rays and gamma-rays.Most studies focus on improving the sensitivity of single-pixel MHP detectors.However,little work pays attention to the dark current,which is crucial for the back-end circuit integration.Herein,the requirement of dark current is quantitatively evaluated as low as 10^(−9)A/cm^(2)for X-ray imagers integrated on pixel circuits.Moreover,through the semiconductor device analysis and simulation,we reveal that the main current compositions of thick perovskite X-ray detectors are the thermionic-emission current(J_(T))and the generation-recombination current(J_(g-r)).The typical observed failures of p-n junctions in thick detectors are caused by the high generation-recombination current due to the band mismatch and interface defects.This work provides a deep insight into the design of high sensitivity and low dark current perovskite X-ray detectors.