期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Wave Propagation Model in a Human Long Poroelastic Bone under Effect of Magnetic Field and Rotation
1
作者 A.M.Abd-Alla hanaa abu-zinadah +2 位作者 S.M.Abo-Dahab J.Bouslimi M.Omri 《Computers, Materials & Continua》 SCIE EI 2021年第8期1485-1504,共20页
This article is aimed at describing the way rotation and magnetic field affect the propagation of waves in an infinite poroelastic cylindrical bone.It offers a solution with an exact closed form.The authors got and ex... This article is aimed at describing the way rotation and magnetic field affect the propagation of waves in an infinite poroelastic cylindrical bone.It offers a solution with an exact closed form.The authors got and examined numerically the general frequency equation for poroelastic bone.Moreover,they calculated the frequencies of poroelastic bone for different values of the magnetic field and rotation.Unlike the results of previous studies,the authors noticed little frequency dispersion in the wet bone.The proposed model will be applicable to wide-range parametric projects of bone mechanical response.Examining the vibration of surface waves in rotating cylindrical,long human bones under the magnetic field can have an impact.The findings of the study are offered in graphs.Then,a comparison with the results of the literature is conducted to show the effect of rotation and magnetic field on the wave propagation phenomenon.It is worth noting that the results of the study highly match those of the literature. 展开更多
关键词 Propagation of waves ROTATION magnetic field POROELASTIC wet bone natural frequency magnetic field
在线阅读 下载PDF
Soliton solutions for nonlinear variable-order fractional Korteweg-de Vries(KdV)equation arising in shallow water waves
2
作者 Umair Ali Hijaz Ahmad hanaa abu-zinadah 《Journal of Ocean Engineering and Science》 SCIE 2024年第1期50-58,共9页
Nonlinear fractional differential equations provide suitable models to describe real-world phenomena and many fractional derivatives are varying with time and space.The present study considers the advanced and broad s... Nonlinear fractional differential equations provide suitable models to describe real-world phenomena and many fractional derivatives are varying with time and space.The present study considers the advanced and broad spectrum of the nonlinear(NL)variable-order fractional differential equation(VO-FDE)in sense of VO Caputo fractional derivative(CFD)to describe the physical models.The VO-FDE transforms into an ordinary differential equation(ODE)and then solving by the modified(G/G)-expansion method.For ac-curacy,the space-time VO fractional Korteweg-de Vries(KdV)equation is solved by the proposed method and obtained some new types of periodic wave,singular,and Kink exact solutions.The newly obtained solutions confirmed that the proposed method is well-ordered and capable implement to find a class of NL-VO equations.The VO non-integer performance of the solutions is studied broadly by using 2D and 3D graphical representation.The results revealed that the NL VO-FDEs are highly active,functional and convenient in explaining the problems in scientific physics. 展开更多
关键词 Space-time VO fractional KdV equation modified(G′/G)-expansion method VO Caputo fractional derivative generalized Riccati equation
原文传递
3D numerical study and comparison of thermal-flow performance of various annular finne d-tub e designs
3
作者 Farouk Tahrour Hijaz Ahmad +3 位作者 Houari Ameur Tareq Saeed hanaa abu-zinadah Younes Menni 《Journal of Ocean Engineering and Science》 SCIE 2023年第3期294-307,共14页
With the increase of heat transfer problems in marine vehicles and submerged power stations in oceans,the search for an efficient finned-tube heat exchanger has become particularly important.The purpose of the present... With the increase of heat transfer problems in marine vehicles and submerged power stations in oceans,the search for an efficient finned-tube heat exchanger has become particularly important.The purpose of the present investigation is to analyze and compare the thermal exchange and flow characteristics between five different fin designs,namely:a concentric circular finned-tube(CCFT),an eccentric circular finned-tube(ECFT),a perforated circular finned-tube(PCFT),a serrated circular finned-tube(SCFT),and a star-shaped finned-tube(S-SFT).The fin design and spacing impact on the thermal-flow performance of a heat exchanger was computed at Reynolds numbers varying from 4,300 to 15,000.From the numerical results,and when the fin spacing has been changed from 2 to 7 mm,an enhancement in the Colburn factor and a reduction in the friction factor and fin performances were observed for all cases under study.Three criteria were checked to select the most efficient fin design:the performance evaluation criterion P EC,the global performance criterion G PC,and the mass global performance criterion M G PC.Whatever the value of Reynolds number,the conventional CCFT provided the lowest performance evaluation criterion P EC,while the SCFT gave the highest amount of P EC.The most significant value of G PC was reached with the ECFT;however,G PC remained almost the same for CCFT,PCFT,SCFT,and S-SFT.In terms of the mass global performance criterion,the S-SFT provides the highest M Gpc as compared with the full fins of CCFT(41-73%higher)and ECFT(29-54%higher).Thus,the heat exchanger with S-SFT is recommended to be used in the cooling of offshore energy systems. 展开更多
关键词 Thermal-flow performance Eccentric fins Star-shaped fins Perforated fins Finned-tube designs
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部