Background Three-dimensional(3D)shape representation using mesh data is essential in various applications,such as virtual reality and simulation technologies.Current methods for extracting features from mesh edges or ...Background Three-dimensional(3D)shape representation using mesh data is essential in various applications,such as virtual reality and simulation technologies.Current methods for extracting features from mesh edges or faces struggle with complex 3D models because edge-based approaches miss global contexts and face-based methods overlook variations in adjacent areas,which affects the overall precision.To address these issues,we propose the Feature Discrimination and Context Propagation Network(FDCPNet),which is a novel approach that synergistically integrates local and global features in mesh datasets.Methods FDCPNet is composed of two modules:(1)the Feature Discrimination Module,which employs an attention mechanism to enhance the identification of key local features,and(2)the Context Propagation Module,which enriches key local features by integrating global contextual information,thereby facilitating a more detailed and comprehensive representation of crucial areas within the mesh model.Results Experiments on popular datasets validated the effectiveness of FDCPNet,showing an improvement in the classification accuracy over the baseline MeshNet.Furthermore,even with reduced mesh face numbers and limited training data,FDCPNet achieved promising results,demonstrating its robustness in scenarios of variable complexity.展开更多
This paper addresses the issues regarding the economics of clean energy transmission channels in Southeast Asia.The research developed an improved comprehensive model for the generation and transmission planning consi...This paper addresses the issues regarding the economics of clean energy transmission channels in Southeast Asia.The research developed an improved comprehensive model for the generation and transmission planning considering variable renewable energy characteristics,and it simulated the hourly resolution operation condition of a cross-regional interconnection grid of Southeast Asia,China,and South Asia.Additionally,we conducted a sensitivity analysis,and the assessment of the channels’economics covered a variety of factors such as clean energy penetration,CO_(2),and pollutant reduction.Conclusions are drawn regarding the influence of different parameters and conditions on the economics of the transmission channel.Subsequently,several recommendations were proposed based on these analyses,which could support the development of the scheme of Southeast Asia power grid and the interconnection of the Belt and Road initiative.展开更多
Due to the constraints imposed by physical effects and performance degra certain limitations in sustaining the advancement of Moore’s law.Two-dimensional(2D)materials have emerged as highly promising candidates for t...Due to the constraints imposed by physical effects and performance degra certain limitations in sustaining the advancement of Moore’s law.Two-dimensional(2D)materials have emerged as highly promising candidates for the post-Moore era,offering significant potential in domains such as integrated circuits and next-generation computing.Here,in this review,the progress of 2D semiconductors in process engineering and various electronic applications are summarized.A careful introduction of material synthesis,transistor engineering focused on device configuration,dielectric engineering,contact engineering,and material integration are given first.Then 2D transistors for certain electronic applications including digital and analog circuits,heterogeneous integration chips,and sensing circuits are discussed.Moreover,several promising applications(artificial intelligence chips and quantum chips)based on specific mechanism devices are introduced.Finally,the challenges for 2D materials encountered in achieving circuit-level or system-level applications are analyzed,and potential development pathways or roadmaps are further speculated and outlooked.展开更多
基金Supported by the National Key R&D Program of China(2022YFC3803600).
文摘Background Three-dimensional(3D)shape representation using mesh data is essential in various applications,such as virtual reality and simulation technologies.Current methods for extracting features from mesh edges or faces struggle with complex 3D models because edge-based approaches miss global contexts and face-based methods overlook variations in adjacent areas,which affects the overall precision.To address these issues,we propose the Feature Discrimination and Context Propagation Network(FDCPNet),which is a novel approach that synergistically integrates local and global features in mesh datasets.Methods FDCPNet is composed of two modules:(1)the Feature Discrimination Module,which employs an attention mechanism to enhance the identification of key local features,and(2)the Context Propagation Module,which enriches key local features by integrating global contextual information,thereby facilitating a more detailed and comprehensive representation of crucial areas within the mesh model.Results Experiments on popular datasets validated the effectiveness of FDCPNet,showing an improvement in the classification accuracy over the baseline MeshNet.Furthermore,even with reduced mesh face numbers and limited training data,FDCPNet achieved promising results,demonstrating its robustness in scenarios of variable complexity.
基金Supported by Science and Technology Foundation of GEIG(52450018000M)National Key R&D Program of China(2016YFB0900500).
文摘This paper addresses the issues regarding the economics of clean energy transmission channels in Southeast Asia.The research developed an improved comprehensive model for the generation and transmission planning considering variable renewable energy characteristics,and it simulated the hourly resolution operation condition of a cross-regional interconnection grid of Southeast Asia,China,and South Asia.Additionally,we conducted a sensitivity analysis,and the assessment of the channels’economics covered a variety of factors such as clean energy penetration,CO_(2),and pollutant reduction.Conclusions are drawn regarding the influence of different parameters and conditions on the economics of the transmission channel.Subsequently,several recommendations were proposed based on these analyses,which could support the development of the scheme of Southeast Asia power grid and the interconnection of the Belt and Road initiative.
基金supported in part by STI 2030-Major Projects under Grant 2022ZD0209200sponsored by Tsinghua-Toyota Joint Research Fund+12 种基金in part by National Natural Science Foundation of China under Grant 62374099, Grant 62022047, Grant U20A20168, Grant 51861145202, Grant 51821003, and Grant 62175219in part by the National Key R&D Program under Grant 2016YFA0200400in part by Beijing Natural Science-Xiaomi Innovation Joint Fund Grant L233009in part supported by Tsinghua University-Zhuhai Huafa Industrial Share Company Joint Institute for Architecture Optoelectronic Technologies (JIAOT KF202204)in part by the Daikin-Tsinghua Union Programin part sponsored by CIE-Tencent Robotics X Rhino-Bird Focused Research Programin part by the Guoqiang Institute, Tsinghua Universityin part by the Research Fund from Beijing Innovation Center for Future Chipin part by Shanxi “1331 Project” Key Subjects Constructionin part by the Youth Innovation Promotion Association of Chinese Academy of Sciences (2019120)the opening fund of Key Laboratory of Science and Technology on Silicon Devices, Chinese Academy of Sciencesin part by the project of MOE Innovation Platformin part by the State Key Laboratory of Integrated Chips and Systems
文摘Due to the constraints imposed by physical effects and performance degra certain limitations in sustaining the advancement of Moore’s law.Two-dimensional(2D)materials have emerged as highly promising candidates for the post-Moore era,offering significant potential in domains such as integrated circuits and next-generation computing.Here,in this review,the progress of 2D semiconductors in process engineering and various electronic applications are summarized.A careful introduction of material synthesis,transistor engineering focused on device configuration,dielectric engineering,contact engineering,and material integration are given first.Then 2D transistors for certain electronic applications including digital and analog circuits,heterogeneous integration chips,and sensing circuits are discussed.Moreover,several promising applications(artificial intelligence chips and quantum chips)based on specific mechanism devices are introduced.Finally,the challenges for 2D materials encountered in achieving circuit-level or system-level applications are analyzed,and potential development pathways or roadmaps are further speculated and outlooked.