期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Vertically Aligned Silicon Carbide Nanowires/Boron Nitride Cellulose Aerogel Networks Enhanced Thermal Conductivity and Electromagnetic Absorbing of Epoxy Composites 被引量:25
1
作者 Duo Pan Gui Yang +11 位作者 hala mabo-dief Jingwen Dong Fengmei Su Chuntai Liu Yifan Li Ben Bin Xu Vignesh Murugadoss Nithesh Naik Salah MEl-Bahy Zeinhom MEl-Bahy Minan Huang Zhanhu Guo 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第7期209-227,共19页
With the innovation of microelectronics technology, the heat dissipation problem inside the device will face a severe test. In this work, cellulose aerogel(CA) with highly enhanced thermal conductivity(TC) in vertical... With the innovation of microelectronics technology, the heat dissipation problem inside the device will face a severe test. In this work, cellulose aerogel(CA) with highly enhanced thermal conductivity(TC) in vertical planes was successfully obtained by constructing a vertically aligned silicon carbide nanowires(SiC NWs)/boron nitride(BN) network via the ice template-assisted strategy. The unique network structure of SiC NWs connected to BN ensures that the TC of the composite in the vertical direction reaches 2.21 W m^(-1) K^(-1) at a low hybrid filler loading of 16.69 wt%, which was increased by 890% compared to pure epoxy(EP). In addition, relying on unique porous network structure of CA, EP-based composite also showed higher TC than other comparative samples in the horizontal direction. Meanwhile, the composite exhibits good electrically insulating with a volume electrical resistivity about 2.35 × 10^(11) Ω cm and displays excellent electromagnetic wave absorption performance with a minimum reflection loss of-21.5 dB and a wide effective absorption bandwidth(<-10 dB) from 8.8 to 11.6 GHz. Therefore, this work provides a new strategy for manufacturing polymer-based composites with excellent multifunctional performances in microelectronic packaging applications. 展开更多
关键词 EPOXY Ice template Vertical alignment Thermal conductivity Multifunctionality
在线阅读 下载PDF
Tellurium intervened Fe-N codoped carbon for improved oxygen reduction reaction and high-performance Zn-air batteries
2
作者 Rui Wang Zihan Meng +8 位作者 Xuemin Yan Tian Tian Ming Lei Rami Adel Pashameah hala mabo-dief Hassan Algadi Nina Huang Zhanhu Guo Haolin Tang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第6期215-222,共8页
Pyrolysis-acquired iron and nitrogen codoped carbon(Fe-N-C)has been comprehensively investigated for its promising oxygen reduction reaction(ORR)catalytic performance and structural complexity.The modification of non-... Pyrolysis-acquired iron and nitrogen codoped carbon(Fe-N-C)has been comprehensively investigated for its promising oxygen reduction reaction(ORR)catalytic performance and structural complexity.The modification of non-metal elements with larger atomic radius and the corresponding intrinsic microstructure-property relations are rarely reported.In this study,tellurium(Te)intervened Fe-N-C was prepared by micelles-induced polymerization with Te nanowires as an in-situ intervening agent.The out-plane bonding of Te with Fe induced the increase of both N content and proportion of pyridinic N on the material surface,thus improving the ORR catalytic performance.The assembled Zn-air battery demonstrated a maximum power density of 250 mW/cm^(2)and excellent rate capability under various discharge current densities,which was much better than the Pt/C.Overall,the current work demonstrates a novel Te/Fe-N-C material and reveals an original Te intervened Fe-N-C strategy and N reconfiguration mechanism,which is of great significance for the design of key materials in energy-related fields. 展开更多
关键词 Te/Fe-N-C Assembly ORR ELECTROCATALYSIS Zn-air battery
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部