Soliton microcombs,which require the hosting cavity to operate in an anomalous dispersion regime,are essential to integrate photonic systems.In the past,soliton microcombs were generated on cavity whispering gallery m...Soliton microcombs,which require the hosting cavity to operate in an anomalous dispersion regime,are essential to integrate photonic systems.In the past,soliton microcombs were generated on cavity whispering gallery modes(WGMs),and the anomalous dispersion requirement of the cavity made by normal dispersion material was achieved through structural dispersion engineering.This inevitably degrades the cavity optical quality factor(Q)and increases pump threshold power for soliton comb generation.To overcome the challenges,here,we report a soliton microcomb excited by cavity polygon modes.These modes display anomalous dispersion at near-infrared while optical Q factors exceeding 4×10^(6) are maintained.Consequently,a soliton comb spanning from 1450 nm to 1620 nm with a record low pump power of 11 m W is demonstrated,a three-fold improvement compared to the state of the art on the same material platform.展开更多
We demonstrate single-mode microdisk lasers in the telecom band with ultralow thresholds on erbium-ytterbium co-doped thin-film lithium niobate(TFLN).The active microdisk was fabricated with high-Q factors by photolit...We demonstrate single-mode microdisk lasers in the telecom band with ultralow thresholds on erbium-ytterbium co-doped thin-film lithium niobate(TFLN).The active microdisk was fabricated with high-Q factors by photolithography-assisted chemomechanical etching.Thanks to the erbium-ytterbium co-doping providing high optical gain,the ultralow loss nanostructuring,and the excitation of high-Q coherent polygon modes,which suppresses multimode lasing and allows high spatial mode overlap between pump and lasing modes,single-mode laser emission operating at 1530 nm wavelength was observed with an ultralow threshold,under a 980-nm-band optical pump.The threshold was measured as low as 1μW,which is one order of magnitude smaller than the best results previously reported in single-mode active TFLN microlasers.The conversion efficiency reaches 4.06×10^(-3),which is also the highest value reported in single-mode active TFLN microlasers.展开更多
Single-frequency ultranarrow linewidth on-chip microlasers with a fast wavelength tunability play a game-changing role in a broad spectrum of applications ranging from coherent communication,light detection and rangin...Single-frequency ultranarrow linewidth on-chip microlasers with a fast wavelength tunability play a game-changing role in a broad spectrum of applications ranging from coherent communication,light detection and ranging,to metrology and sensing.Design and fabrication of such light sources remain a challenge due to the difficulties in making a laser cavity that has an ultrahigh optical quality(Q)factor and supports only a single lasing frequency simultaneously.Here,we demonstrate a unique single-frequency ultranarrow linewidth lasing mechanism on an erbium ion-doped lithium niobate(LN)microdisk through simultaneous excitation of high-Q polygon modes at both pump and laser wavelengths.As the polygon modes are sparse within the optical gain bandwidth compared with the whispering gallery mode counterpart,while their Q factors(above 10 million)are even higher due to the significantly reduced scattering on their propagation paths,single-frequency lasing with a linewidth as narrow as 322 Hz is observed.The measured linewidth is three orders of magnitude narrower than the previous record in on-chip LN microlasers.Finally,enabled by the strong linear electro-optic effect of LN,real-time electro-optical tuning of the microlaser with a high tuning efficiency of∼50 pm∕100 V is demonstrated.展开更多
We report an electro-optically(EO)tunable microdisk laser fabricated on the erbium(Er^(3+))-doped lithium niobate on insulator(LNOI) substrate.By applying a variable voltage on a pair of integrated chromium(Cr) microe...We report an electro-optically(EO)tunable microdisk laser fabricated on the erbium(Er^(3+))-doped lithium niobate on insulator(LNOI) substrate.By applying a variable voltage on a pair of integrated chromium(Cr) microelectrodes fabricated near the LNOI microdisk,electro-optic modulation with an effective resonance-frequency tuning rate of 2.6 GHz/100 V has been achieved.This gives rise to a tuning range of 45 pm when the electric voltage is varied between-200 V and 200 V.展开更多
基金supports from National Key R&D Program of China(Grants No.2019YFA0705000,2022YFA1404600,2022YFA1205100)National Natural Science Foundation of China(Grants No.62122079,12192251,62235019,12334014,12134001,12104159,11933005)+4 种基金Innovation Program for Quantum Science and Technology(No.2021ZD0301403)Shanghai Municipal Science and Technology Major Project(2019SHZDZX01)Science and Technology Commission of Shanghai Municipality(No.23ZR1481800)the Youth Innovation Promotion Association of Chinese Academy of Sciences(Grant No.2020249)Engineering Research Center for Nanophotonics&Advanced Instrument,Ministry of Education,East China Normal University(No.2023nmc005)
文摘Soliton microcombs,which require the hosting cavity to operate in an anomalous dispersion regime,are essential to integrate photonic systems.In the past,soliton microcombs were generated on cavity whispering gallery modes(WGMs),and the anomalous dispersion requirement of the cavity made by normal dispersion material was achieved through structural dispersion engineering.This inevitably degrades the cavity optical quality factor(Q)and increases pump threshold power for soliton comb generation.To overcome the challenges,here,we report a soliton microcomb excited by cavity polygon modes.These modes display anomalous dispersion at near-infrared while optical Q factors exceeding 4×10^(6) are maintained.Consequently,a soliton comb spanning from 1450 nm to 1620 nm with a record low pump power of 11 m W is demonstrated,a three-fold improvement compared to the state of the art on the same material platform.
基金supported by the National Key R&D Program of China(Nos.2019YFA0705000,2022YFA1404600,and 2022YFA1205100)the National Natural Science Foundation of China(NSFC)(Nos.62122079,12192251,62235019,12334014,12134001,12104159,and 11933005)+4 种基金the Innovation Program for Quantum Science and Technology(No.2021ZD0301403)the Shanghai Municipal Science and Technology Major Project(No.2019SHZDZX01)the Science and Technology Commission of Shanghai Municipality(Nos.21DZ1101500 and 23ZR1481800)the Youth Innovation Promotion Association of Chinese Academy of Sciences(No.2020249)the Engineering Research Center for Nanophotonics&Advanced Instrument,Ministry of Education,East China Normal University(No.2023nmc005)。
文摘We demonstrate single-mode microdisk lasers in the telecom band with ultralow thresholds on erbium-ytterbium co-doped thin-film lithium niobate(TFLN).The active microdisk was fabricated with high-Q factors by photolithography-assisted chemomechanical etching.Thanks to the erbium-ytterbium co-doping providing high optical gain,the ultralow loss nanostructuring,and the excitation of high-Q coherent polygon modes,which suppresses multimode lasing and allows high spatial mode overlap between pump and lasing modes,single-mode laser emission operating at 1530 nm wavelength was observed with an ultralow threshold,under a 980-nm-band optical pump.The threshold was measured as low as 1μW,which is one order of magnitude smaller than the best results previously reported in single-mode active TFLN microlasers.The conversion efficiency reaches 4.06×10^(-3),which is also the highest value reported in single-mode active TFLN microlasers.
基金the National Key R&D Program of China(2019YFA0705000)the National Natural Science Foundation of China(12192251,62122079,11734009,62035013,61635009,62075192,11874375,and 11874154)+4 种基金Shanghai Municipal Science and Technology Major Project(2019SHZDZX01)Science and Technology Commission of Shanghai Municipality(21DZ1101500)the Quantum Joint Funds of the Natural Foundation of Shandong Province(ZR2020LLZ007)the Fundamental Research Funds for the Central University,Nature Science and Engineering Research Council of Canada(NSERC)Discovery(RGPIN-2020-05938)the Youth Innovation Promotion Association of Chinese Academy of Sciences(2020249).
文摘Single-frequency ultranarrow linewidth on-chip microlasers with a fast wavelength tunability play a game-changing role in a broad spectrum of applications ranging from coherent communication,light detection and ranging,to metrology and sensing.Design and fabrication of such light sources remain a challenge due to the difficulties in making a laser cavity that has an ultrahigh optical quality(Q)factor and supports only a single lasing frequency simultaneously.Here,we demonstrate a unique single-frequency ultranarrow linewidth lasing mechanism on an erbium ion-doped lithium niobate(LN)microdisk through simultaneous excitation of high-Q polygon modes at both pump and laser wavelengths.As the polygon modes are sparse within the optical gain bandwidth compared with the whispering gallery mode counterpart,while their Q factors(above 10 million)are even higher due to the significantly reduced scattering on their propagation paths,single-frequency lasing with a linewidth as narrow as 322 Hz is observed.The measured linewidth is three orders of magnitude narrower than the previous record in on-chip LN microlasers.Finally,enabled by the strong linear electro-optic effect of LN,real-time electro-optical tuning of the microlaser with a high tuning efficiency of∼50 pm∕100 V is demonstrated.
基金supported by the National Key R&D Program of China (No. 2019YFA0705000)National Natural Science Foundation of China (Nos. 12004116, 11874154, 11734009, 11933005, 11874060, and 61991444)+1 种基金Shanghai Municipal Science and Technology Major Project (No. HZDZX01)Fundamental Research Funds for the Central Universities, and Shanghai Sailing Program (No. 1410400)
文摘We report an electro-optically(EO)tunable microdisk laser fabricated on the erbium(Er^(3+))-doped lithium niobate on insulator(LNOI) substrate.By applying a variable voltage on a pair of integrated chromium(Cr) microelectrodes fabricated near the LNOI microdisk,electro-optic modulation with an effective resonance-frequency tuning rate of 2.6 GHz/100 V has been achieved.This gives rise to a tuning range of 45 pm when the electric voltage is varied between-200 V and 200 V.