Climate models are vital for understanding and projecting global climate change and its associated impacts.However,these models suffer from biases that limit their accuracy in historical simulations and the trustworth...Climate models are vital for understanding and projecting global climate change and its associated impacts.However,these models suffer from biases that limit their accuracy in historical simulations and the trustworthiness of future projections.Addressing these challenges requires addressing internal variability,hindering the direct alignment between model simulations and observations,and thwarting conventional supervised learning methods.Here,we employ an unsupervised Cycle-consistent Generative Adversarial Network(CycleGAN),to correct daily Sea Surface Temperature(SST)simulations from the Community Earth System Model 2(CESM2).Our results reveal that the CycleGAN not only corrects climatological biases but also improves the simulation of major dynamic modes including the El Niño-Southern Oscillation(ENSO)and the Indian Ocean Dipole mode,as well as SST extremes.Notably,it substantially corrects climatological SST biases,decreasing the globally averaged Root-Mean-Square Error(RMSE)by 58%.Intriguingly,the CycleGAN effectively addresses the well-known excessive westward bias in ENSO SST anomalies,a common issue in climate models that traditional methods,like quantile mapping,struggle to rectify.Additionally,it substantially improves the simulation of SST extremes,raising the pattern correlation coefficient(PCC)from 0.56 to 0.88 and lowering the RMSE from 0.5 to 0.32.This enhancement is attributed to better representations of interannual,intraseasonal,and synoptic scales variabilities.Our study offers a novel approach to correct global SST simulations and underscores its effectiveness across different time scales and primary dynamical modes.展开更多
Plants regulate root exudates to form the composition of rhizosphere microbial community and resist disease stress.Many studies advocate intervention with biochar(BC)and exogenous microbe to enhance this process and i...Plants regulate root exudates to form the composition of rhizosphere microbial community and resist disease stress.Many studies advocate intervention with biochar(BC)and exogenous microbe to enhance this process and improve plant defenses.However,the mechanism by which BC mediates exogenous microorganisms to enhance root exudate-soil microbial defensive feedback remains unclear.Here,a BC-based Bacillus subtilis SL-44 inoculant(BC@SL)was prepared to investigate the defensive feedback mechanism for plants,which enhanced plant growth and defense more than BC or SL-44 alone.BC@SL not only strengthened the direct inhibition of Rhizoctonia solani Rs by solving the problem of reduced viability of a single SL-44 inoculant but also indirectly alleviated the Rs stress by strengthening plant defensive feedback,which was specifically manifested by the following:(1)increasing the root resistance enzyme activities(superoxide dismutase up to 3.5 FC);(2)increasing the abundance of beneficial microbe in soil(0.38-16.31%Bacillus);and(3)remodeling the composition of root exudates(palmitic acid 3.95-6.96%,stearic acid 3.56-5.93%,2,4 tert-butylphenol 1.23-2.62%,increasing citric acid 0.94-1.81%,and benzoic acid 0.97-2.13%).The mechanism reveals that BC@SL can enhance the positive regulatory effect between root exudates and microorganisms by optimizing their composition.Overall,BC@SL is a stable and efficient new solid exogenous soil auxiliary,and this study lays the foundation for the generalization and application of green pesticides.展开更多
Knowledge of the electromagnetic radiation characteristics of 5G base stations under diferent circumstances is useful for risk prevention,assessment,and management.This paper selects several typical scenes(Open spaces...Knowledge of the electromagnetic radiation characteristics of 5G base stations under diferent circumstances is useful for risk prevention,assessment,and management.This paper selects several typical scenes(Open spaces,building concentration areas,user and building intensive areas)for electromagnetic radiation monitoring,and analyzes the relationship between ambient radiated power density and base station background.The results show that the factors that have signifcant impacts on the environmental radiation power density of 5G base stations including transmission distance,base station distribution,user density,building refection superposition and so on.The radiation energy decays rapidly with distance.When the density of the building distribution is too large,the superposition efect caused by the refected wave is concentrated at the distance of 50-70 meters.When the user density decreases(the superposition efect of refected waves decreases),the 5G monitoring value follows the direct wave attenuation law and decreases rapidly with the increase of distance.Points with higher measured radiation in the simple access condition also had higher measured radiation in the high-speed download condition.With the popularization of 5G mobile phones and the increase of user density,the resource utilization of a single user will decline to the normal operation state,and the radiation environmental impact will be further reduced.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.42141019 and 42261144687)the Second Tibetan Plateau Scientific Expedition and Research(STEP)program(Grant No.2019QZKK0102)+4 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB42010404)the National Natural Science Foundation of China(Grant No.42175049)the Guangdong Meteorological Service Science and Technology Research Project(Grant No.GRMC2021M01)the National Key Scientific and Technological Infrastructure project“Earth System Science Numerical Simulator Facility”(EarthLab)for computational support and Prof.Shiming XIANG for many useful discussionsNiklas BOERS acknowledges funding from the Volkswagen foundation.
文摘Climate models are vital for understanding and projecting global climate change and its associated impacts.However,these models suffer from biases that limit their accuracy in historical simulations and the trustworthiness of future projections.Addressing these challenges requires addressing internal variability,hindering the direct alignment between model simulations and observations,and thwarting conventional supervised learning methods.Here,we employ an unsupervised Cycle-consistent Generative Adversarial Network(CycleGAN),to correct daily Sea Surface Temperature(SST)simulations from the Community Earth System Model 2(CESM2).Our results reveal that the CycleGAN not only corrects climatological biases but also improves the simulation of major dynamic modes including the El Niño-Southern Oscillation(ENSO)and the Indian Ocean Dipole mode,as well as SST extremes.Notably,it substantially corrects climatological SST biases,decreasing the globally averaged Root-Mean-Square Error(RMSE)by 58%.Intriguingly,the CycleGAN effectively addresses the well-known excessive westward bias in ENSO SST anomalies,a common issue in climate models that traditional methods,like quantile mapping,struggle to rectify.Additionally,it substantially improves the simulation of SST extremes,raising the pattern correlation coefficient(PCC)from 0.56 to 0.88 and lowering the RMSE from 0.5 to 0.32.This enhancement is attributed to better representations of interannual,intraseasonal,and synoptic scales variabilities.Our study offers a novel approach to correct global SST simulations and underscores its effectiveness across different time scales and primary dynamical modes.
基金National Natural Science Foundation of China(22278325,32060026)Qin Chuangyuan’s Scientists+Engineers Team in Shaanxi Province(2022KXJ-137)+3 种基金Youth Innovation Team of Shaanxi Universities(2022TD071)Xi’an Key Laboratory Performance Assessment Award Subsidy Project(2021JH-201-0004)Agricultural Technology R&D Project of Xi’an Science and Technology Bureau(22NYYF0037)Shaanxi Provincial Key Research and Development Program(2022NY-053).
文摘Plants regulate root exudates to form the composition of rhizosphere microbial community and resist disease stress.Many studies advocate intervention with biochar(BC)and exogenous microbe to enhance this process and improve plant defenses.However,the mechanism by which BC mediates exogenous microorganisms to enhance root exudate-soil microbial defensive feedback remains unclear.Here,a BC-based Bacillus subtilis SL-44 inoculant(BC@SL)was prepared to investigate the defensive feedback mechanism for plants,which enhanced plant growth and defense more than BC or SL-44 alone.BC@SL not only strengthened the direct inhibition of Rhizoctonia solani Rs by solving the problem of reduced viability of a single SL-44 inoculant but also indirectly alleviated the Rs stress by strengthening plant defensive feedback,which was specifically manifested by the following:(1)increasing the root resistance enzyme activities(superoxide dismutase up to 3.5 FC);(2)increasing the abundance of beneficial microbe in soil(0.38-16.31%Bacillus);and(3)remodeling the composition of root exudates(palmitic acid 3.95-6.96%,stearic acid 3.56-5.93%,2,4 tert-butylphenol 1.23-2.62%,increasing citric acid 0.94-1.81%,and benzoic acid 0.97-2.13%).The mechanism reveals that BC@SL can enhance the positive regulatory effect between root exudates and microorganisms by optimizing their composition.Overall,BC@SL is a stable and efficient new solid exogenous soil auxiliary,and this study lays the foundation for the generalization and application of green pesticides.
基金supported by the Ecological Environment Research Project of Jiangsu Province:5G Base station radiation environment monitoring technology and environmental impact research(No.2020014).
文摘Knowledge of the electromagnetic radiation characteristics of 5G base stations under diferent circumstances is useful for risk prevention,assessment,and management.This paper selects several typical scenes(Open spaces,building concentration areas,user and building intensive areas)for electromagnetic radiation monitoring,and analyzes the relationship between ambient radiated power density and base station background.The results show that the factors that have signifcant impacts on the environmental radiation power density of 5G base stations including transmission distance,base station distribution,user density,building refection superposition and so on.The radiation energy decays rapidly with distance.When the density of the building distribution is too large,the superposition efect caused by the refected wave is concentrated at the distance of 50-70 meters.When the user density decreases(the superposition efect of refected waves decreases),the 5G monitoring value follows the direct wave attenuation law and decreases rapidly with the increase of distance.Points with higher measured radiation in the simple access condition also had higher measured radiation in the high-speed download condition.With the popularization of 5G mobile phones and the increase of user density,the resource utilization of a single user will decline to the normal operation state,and the radiation environmental impact will be further reduced.