AIM: To separate and identify differentially expressed nuclear matrix proteins (NMPs) between the immortalized human esophageal epithelial cell line (SHEE) and the malignantly transformed esophageal carcinoma cell lin...AIM: To separate and identify differentially expressed nuclear matrix proteins (NMPs) between the immortalized human esophageal epithelial cell line (SHEE) and the malignantly transformed esophageal carcinoma cell line (SHEEC), and to provide new ways for finding specific markers and the pathogenesis of esophageal carcinoma.METHODS: SHEE and SHEEC cell lines were used to extract NMPs. The quality of NMPs was monitored by Western blot analysis including DNA topoisomerase Ⅱα, proliferation cell nuclear antigen (PCNA) and histone. NMPs of SHEE and SHEEC were analyzed by two-dimensional electrophoresis (2-DE), silver staining and PDQuest6.2 image analysis software. Three spots in which the differentially expressed NMlPs were more obvious, were selected and analyzed with matrix-assisted laser desorption/ionization time of flying mass spectrometry (MALDI- TOF-MS) and database search.RESULTS: Western blot analysis revealed that DNA topoisomerase Ⅱα and PCNA were detected, and the majority of histones were deleted in NMPs of SHEE and SHEEC. After 2-DE image analysis by PDQuest6.2 software, the 2-DE maps were detected with an average of 106±7.1 spots in SHEE and 132±5.0 spots in SHEEC. Most of them were matched one another (r=0.72), only 16 protein spots were found differing in intensity. Three NMPs including cytoskeletal tropomyosin,FK506bindingprotein6,similartoretinoblastoma binding protein 8 were preliminarily identified by MALDI- TOF-MS.CONCLUSION: These differentially expressed NMPs may play an important role during malignant transformation from SHEE to SHEEC. Their separation and identification will contribute to searching for specific markers and probing into the pathogenesis of esophageal carcinoma.展开更多
AIM: To develop a cancer vaccine of dendritic cells derived from human cord blood CD34+ cells and to investigate its cytotoxicity on human hepatocarcinoma cells in vitro and in sever combined immunodeficiency (SCID) m...AIM: To develop a cancer vaccine of dendritic cells derived from human cord blood CD34+ cells and to investigate its cytotoxicity on human hepatocarcinoma cells in vitro and in sever combined immunodeficiency (SCID) mice. METHODS: Lymphocytes from cord blood or peripheral blood were primed by DCs, which were derived from cord blood and pulsed with whole tumor cell lysates. Nonradiative neutral red uptake assay was adopted to detect the cytotoxicity of primed lymphocytes on human hepatocartinoma cell line BEL-7402 in vitro. The anti-tumor effect of primed lymphocytes in vivo was detected in SCID mice, including therapeutic effect and vaccination effect. RESULTS: The cytotoxicity of DC vaccine primed lymphocytes from cord blood or peripheral blood on human hepatocarcinoma cell line BEL-7402 was significantly higher than that of unprimed lymphocytes in vitro (44.09% vs 14.69%, 47.92% vs 19.44%, P<0.01). There was no significant difference between the cytotoxicity of primed lymphocytes from cord blood and peripheral blood (P>0.05). The tumor growth rate and tumor size were smaller in SCID mice treated or vaccinated with primed lymphocytes than those with unprimed lymphocytes. SCID mice vaccinated with primed lymphocytes had a lower tumor incidence (80% vs 100%, P<0.05) and delayed tumor latent period compared with mice vaccinated with unprimed lymphocytes (11d vs 7 d,P<0.01). CONCLUSION: Vaccine of cord blood derived-DCs has an inhibitory activity on growth of human hepatocarcinoma cells in vitro and in SCID mice. The results also implicate the potential role of cord blood derived-DC vaccine in clinical tumor immunotherapy.展开更多
基金the National Natural Science Foundation of China,No.39900069,No.30170428Natural Science Foundation of Guangdong Province,No.990799,No.010431+2 种基金College Natural Science Foundation of Guangdong province,No.200033Medical Scientific Foundation of Guangdong Province,No.A2001419Research and Development Foundation of Shantou University,No.L0004,No.L00012
文摘AIM: To separate and identify differentially expressed nuclear matrix proteins (NMPs) between the immortalized human esophageal epithelial cell line (SHEE) and the malignantly transformed esophageal carcinoma cell line (SHEEC), and to provide new ways for finding specific markers and the pathogenesis of esophageal carcinoma.METHODS: SHEE and SHEEC cell lines were used to extract NMPs. The quality of NMPs was monitored by Western blot analysis including DNA topoisomerase Ⅱα, proliferation cell nuclear antigen (PCNA) and histone. NMPs of SHEE and SHEEC were analyzed by two-dimensional electrophoresis (2-DE), silver staining and PDQuest6.2 image analysis software. Three spots in which the differentially expressed NMlPs were more obvious, were selected and analyzed with matrix-assisted laser desorption/ionization time of flying mass spectrometry (MALDI- TOF-MS) and database search.RESULTS: Western blot analysis revealed that DNA topoisomerase Ⅱα and PCNA were detected, and the majority of histones were deleted in NMPs of SHEE and SHEEC. After 2-DE image analysis by PDQuest6.2 software, the 2-DE maps were detected with an average of 106±7.1 spots in SHEE and 132±5.0 spots in SHEEC. Most of them were matched one another (r=0.72), only 16 protein spots were found differing in intensity. Three NMPs including cytoskeletal tropomyosin,FK506bindingprotein6,similartoretinoblastoma binding protein 8 were preliminarily identified by MALDI- TOF-MS.CONCLUSION: These differentially expressed NMPs may play an important role during malignant transformation from SHEE to SHEEC. Their separation and identification will contribute to searching for specific markers and probing into the pathogenesis of esophageal carcinoma.
文摘AIM: To develop a cancer vaccine of dendritic cells derived from human cord blood CD34+ cells and to investigate its cytotoxicity on human hepatocarcinoma cells in vitro and in sever combined immunodeficiency (SCID) mice. METHODS: Lymphocytes from cord blood or peripheral blood were primed by DCs, which were derived from cord blood and pulsed with whole tumor cell lysates. Nonradiative neutral red uptake assay was adopted to detect the cytotoxicity of primed lymphocytes on human hepatocartinoma cell line BEL-7402 in vitro. The anti-tumor effect of primed lymphocytes in vivo was detected in SCID mice, including therapeutic effect and vaccination effect. RESULTS: The cytotoxicity of DC vaccine primed lymphocytes from cord blood or peripheral blood on human hepatocarcinoma cell line BEL-7402 was significantly higher than that of unprimed lymphocytes in vitro (44.09% vs 14.69%, 47.92% vs 19.44%, P<0.01). There was no significant difference between the cytotoxicity of primed lymphocytes from cord blood and peripheral blood (P>0.05). The tumor growth rate and tumor size were smaller in SCID mice treated or vaccinated with primed lymphocytes than those with unprimed lymphocytes. SCID mice vaccinated with primed lymphocytes had a lower tumor incidence (80% vs 100%, P<0.05) and delayed tumor latent period compared with mice vaccinated with unprimed lymphocytes (11d vs 7 d,P<0.01). CONCLUSION: Vaccine of cord blood derived-DCs has an inhibitory activity on growth of human hepatocarcinoma cells in vitro and in SCID mice. The results also implicate the potential role of cord blood derived-DC vaccine in clinical tumor immunotherapy.