The Helan-Chuandian N-S Tectonic Belt is a mantle transitional belt in China. The southem part, forming the Chuandian N-S Tectonic Belt, comprises several tectonic systems, each displaying different characteristics. T...The Helan-Chuandian N-S Tectonic Belt is a mantle transitional belt in China. The southem part, forming the Chuandian N-S Tectonic Belt, comprises several tectonic systems, each displaying different characteristics. The Chuandian N-S Tectonic Belt along the western margin of yangtze Block is a strike-slip tectonic belt with a series of echelon left-lateral slip faults. The strike-slip fault systems experienced two stages of structural deformation: early NW-SE striking thrust faults formed under a NE-SW compression stress field, and later sinistral strike-slip structures formed along thrust faults under a NW-SE compression stress field. Mesozoic basins developed between the left-lateral slip faults. Sedimentary facies and paleocurrent directions indicate that basin development was controlled by the strike-slip faults. The oldest strata in the Chuandian N-S Tectonic Belt constrain its formation to early Mesozoic. In fact, The slip tectonic belt formed by clockwise rotation and north-directed subduction-collision of the Yangtze Block in Late Triassic-Jurassic. The strike-slip faults that developed within the belt also formed at this time.展开更多
古海岸线重建能为理解全球气候变化和海陆格局演变提供重要的线索。笔者等基于钻孔资料重建了北部湾—雷琼地区新生代以来古海岸线变迁与琼州海峡演变过程。结果表明,北部湾—雷州半岛—海南岛(雷琼地区)新生代经历了古近纪北部湾古湖...古海岸线重建能为理解全球气候变化和海陆格局演变提供重要的线索。笔者等基于钻孔资料重建了北部湾—雷琼地区新生代以来古海岸线变迁与琼州海峡演变过程。结果表明,北部湾—雷州半岛—海南岛(雷琼地区)新生代经历了古近纪北部湾古湖、新近纪—早更新世早期古琼州海峡、早更新世晚期—晚更新世峡湾和全新世琼州海峡四个演化阶段。古近纪北部湾形成NEE向互不连通的断陷盆地并充填河—湖相沉积,渐新世晚期海水间歇性入侵北部湾古湖并连通孤立的断陷盆地;中新世早—中期(23.3~10.4 Ma)南海西北部海岸线快速后退,北部湾古湖演变为古琼州海峡,中新世晚期—上新世(10.4~2.58 Ma)海岸线继续后退形成宽阔的古琼州海峡,早更新世早期海退及火山喷发导致古琼州海峡萎缩;早更新世晚期—晚更新世气候频繁波动控制了峡湾与陆地的不断转化,而末次盛冰期大幅度海退直接导致北部湾—雷琼地区从海转陆;15~12 ka BP以来海岸线快速后退并在12~11 ka BP期间短暂停留,北部湾再次由陆转海,之后海平面继续上升,琼州海峡于11 ka BP自西向东完全打开,至6 ka BP海平面达到现今海平面以上2 m左右,现今海陆格局形成。展开更多
针对冬季多能源耦合下的热电联产机组(combined heat and power,CHP)电功率调节能力受限于热功率输出,引起电-热联合系统灵活性不足的问题。该文提出了在网侧与负荷侧异质能流的惯性特征下计及用户温度动态响应以及动态反馈特性的联合...针对冬季多能源耦合下的热电联产机组(combined heat and power,CHP)电功率调节能力受限于热功率输出,引起电-热联合系统灵活性不足的问题。该文提出了在网侧与负荷侧异质能流的惯性特征下计及用户温度动态响应以及动态反馈特性的联合优化运行方法。首先,从建立CHP可行域与运行点的分布特性出发,分析了可再生能源并网后CHP机组运行灵活性不足原因,并给出了不可运行点重新回归CHP运行域优化的措施。其次,构建了传输侧惯性、负荷侧惯性影响下用户温度动态响应的多时间耦合特征双层模型,上层目标为热电异构能源系统总成本最低,下层目标为用能总效用最低。最后,引入了机会约束规划来刻画可再生能源的不确定性,通过算例结果表明,该文所提出方法在保证大量CHP运行点重新收束情况下,实现了可再生能源消纳与用户用能体验的兼顾。展开更多
The Eurasian continent was subject to multiphase intensive intracontinental deformation in the Cenozoic(Fig.1A).However,its Cenozoic intra-continental deformation process and the driving force has long been disputed,w...The Eurasian continent was subject to multiphase intensive intracontinental deformation in the Cenozoic(Fig.1A).However,its Cenozoic intra-continental deformation process and the driving force has long been disputed,which is only associated with the Indo-Asian collision(Molnar and Tapponnier,1975;Jolivet et al.,1990;Tapponnier et al.,2001;Yin,2010;Xu et al.,2013;Zhao et al.,2016),is caused by the Pacific-Asian collision(Cui,1997;Schellart and Lister,2005;Fan et al.,2019),or is connected with a combined effect of the Indo-Asian collision and the Pacific-Eurasia convergence(Ren et al.,2002;Li et al.,2013;Shi et al.,2015;Liu et al.,2019).展开更多
基金supported by National Natural Science Foundation of China (Grant Nos. 40872135 and 40830314)
文摘The Helan-Chuandian N-S Tectonic Belt is a mantle transitional belt in China. The southem part, forming the Chuandian N-S Tectonic Belt, comprises several tectonic systems, each displaying different characteristics. The Chuandian N-S Tectonic Belt along the western margin of yangtze Block is a strike-slip tectonic belt with a series of echelon left-lateral slip faults. The strike-slip fault systems experienced two stages of structural deformation: early NW-SE striking thrust faults formed under a NE-SW compression stress field, and later sinistral strike-slip structures formed along thrust faults under a NW-SE compression stress field. Mesozoic basins developed between the left-lateral slip faults. Sedimentary facies and paleocurrent directions indicate that basin development was controlled by the strike-slip faults. The oldest strata in the Chuandian N-S Tectonic Belt constrain its formation to early Mesozoic. In fact, The slip tectonic belt formed by clockwise rotation and north-directed subduction-collision of the Yangtze Block in Late Triassic-Jurassic. The strike-slip faults that developed within the belt also formed at this time.
文摘古海岸线重建能为理解全球气候变化和海陆格局演变提供重要的线索。笔者等基于钻孔资料重建了北部湾—雷琼地区新生代以来古海岸线变迁与琼州海峡演变过程。结果表明,北部湾—雷州半岛—海南岛(雷琼地区)新生代经历了古近纪北部湾古湖、新近纪—早更新世早期古琼州海峡、早更新世晚期—晚更新世峡湾和全新世琼州海峡四个演化阶段。古近纪北部湾形成NEE向互不连通的断陷盆地并充填河—湖相沉积,渐新世晚期海水间歇性入侵北部湾古湖并连通孤立的断陷盆地;中新世早—中期(23.3~10.4 Ma)南海西北部海岸线快速后退,北部湾古湖演变为古琼州海峡,中新世晚期—上新世(10.4~2.58 Ma)海岸线继续后退形成宽阔的古琼州海峡,早更新世早期海退及火山喷发导致古琼州海峡萎缩;早更新世晚期—晚更新世气候频繁波动控制了峡湾与陆地的不断转化,而末次盛冰期大幅度海退直接导致北部湾—雷琼地区从海转陆;15~12 ka BP以来海岸线快速后退并在12~11 ka BP期间短暂停留,北部湾再次由陆转海,之后海平面继续上升,琼州海峡于11 ka BP自西向东完全打开,至6 ka BP海平面达到现今海平面以上2 m左右,现今海陆格局形成。
文摘针对冬季多能源耦合下的热电联产机组(combined heat and power,CHP)电功率调节能力受限于热功率输出,引起电-热联合系统灵活性不足的问题。该文提出了在网侧与负荷侧异质能流的惯性特征下计及用户温度动态响应以及动态反馈特性的联合优化运行方法。首先,从建立CHP可行域与运行点的分布特性出发,分析了可再生能源并网后CHP机组运行灵活性不足原因,并给出了不可运行点重新回归CHP运行域优化的措施。其次,构建了传输侧惯性、负荷侧惯性影响下用户温度动态响应的多时间耦合特征双层模型,上层目标为热电异构能源系统总成本最低,下层目标为用能总效用最低。最后,引入了机会约束规划来刻画可再生能源的不确定性,通过算例结果表明,该文所提出方法在保证大量CHP运行点重新收束情况下,实现了可再生能源消纳与用户用能体验的兼顾。
基金supported by the National Natural Science Foundation of China(Grant No.41672203)China Geological Survey(CGS)(Grant Nos.DD20190018,DD20160060,1212011120099,1212011120100,1212011220259).
文摘The Eurasian continent was subject to multiphase intensive intracontinental deformation in the Cenozoic(Fig.1A).However,its Cenozoic intra-continental deformation process and the driving force has long been disputed,which is only associated with the Indo-Asian collision(Molnar and Tapponnier,1975;Jolivet et al.,1990;Tapponnier et al.,2001;Yin,2010;Xu et al.,2013;Zhao et al.,2016),is caused by the Pacific-Asian collision(Cui,1997;Schellart and Lister,2005;Fan et al.,2019),or is connected with a combined effect of the Indo-Asian collision and the Pacific-Eurasia convergence(Ren et al.,2002;Li et al.,2013;Shi et al.,2015;Liu et al.,2019).