目的主要开展钛合金表面制备Cr Al Ti N单层涂层后的撞击实验,探究不同条件下钛合金表面的冲蚀损伤规律,揭示钛合金表面的冲蚀损伤机理。方法采用多弧离子镀技术在TC4钛合金表面制备Cr Al Ti N单层涂层,并利用空气炮发射速度为300m/s的...目的主要开展钛合金表面制备Cr Al Ti N单层涂层后的撞击实验,探究不同条件下钛合金表面的冲蚀损伤规律,揭示钛合金表面的冲蚀损伤机理。方法采用多弧离子镀技术在TC4钛合金表面制备Cr Al Ti N单层涂层,并利用空气炮发射速度为300m/s的单个钢珠,在不同角度(30°、45°、60°、90°)下对涂层进行撞击损伤模拟。采用扫描电镜对撞击形貌进行观察,结合撞击表面的元素分析结果,探究钢珠撞击涂层表面的冲蚀损伤机理。结果 90°攻角下,涂层的破损主要由撞击产生的裂纹和涂层表面"液滴"的剥落共同作用引起。45°、30°攻角与60°攻角的撞击相似,损伤主要由两部分组成:一部分是垂直作用产生的裂纹和撞击导致的液滴剥落引起的涂层损伤;另一部分是切向作用引起的摩擦磨损和摩擦过程中产生的温度效应导致的钢珠熔覆。能谱图点44处主要含有Fe2O3、Ti N两种物质,说明该点的涂层已经破坏,并且在切削磨损的同时,钢珠撞击的损伤还伴随着氧化磨损。结论在300m/s的速度下,冲蚀损伤最严重部位为钢珠与涂层接触部位。冲蚀过程中会因温度效应使钢珠熔覆在涂层表面,涂层表面越粗糙,则熔覆物越多。涂层的损伤主要源于垂直分量导致裂纹的萌生和切向的犁削作用。展开更多
Based on new high-resolution seismic profiles and existing structural and sedimentary results, a superposition deformation model for Cenozoic Bachu Uplift of northwestern Tarim Basin, northwestern China is proposed. T...Based on new high-resolution seismic profiles and existing structural and sedimentary results, a superposition deformation model for Cenozoic Bachu Uplift of northwestern Tarim Basin, northwestern China is proposed. The model presents the idea that the Bachu Uplift suffered structure superposition deformation under the dual influences of the Cenozoic uplifting of Southern Tianshan and Western Kunlun orogen, northwestern China. In the end of the Eocene (early Himalayan movement), Bachu Uplift started to be formed with the uplifting of Western Kunlun, and extended NNW into the interior of Kalpin Uplift. In the end of the Miocene (middle Himalayan movement), Bachu Uplift suffered not only the NNW structure deformation caused by the Western Kunlun uplifting, but also the NE structure deformation caused by the Southern Tianshan uplifting, and the thrust front fault of Kalpin thrust system related to the Southern Tianshan orogen intrudes southeastward into the hinterland of Bachu Uplift and extends NNE from well Pil to Xiaohaizi reservoir and Gudongshan mountain, which resulted in the strata folded and denuded strongly. In the end of the Pliocene (late Himalayan movement), the impact of Southern Yianshan orogen decreased because of the stress released with the breakthrough upward of Kalpin fault extending NE, and Bachu Uplift suffered mainly the structure deformation extending NW-NNW caused by the uplifting of Western Kunlun orogen.展开更多
The structural analysis based on the explanation of seismic profiles indicates that a lot of thrust faults and strike-slip faults of Late Cenozoic occur in western Hexi Corridor and its nearby regions. They can be di...The structural analysis based on the explanation of seismic profiles indicates that a lot of thrust faults and strike-slip faults of Late Cenozoic occur in western Hexi Corridor and its nearby regions. They can be divided into two types. One is thrust faults dipping southwards and extending NWwards, which was mainly correlated with the thrusting of northern Qilianshan and located at the NE margin of Qilianshan and the southwestern Hexi Corridor, the other is thrust faults and strike-slip faults that were related to the strike-slipping of Altun fault and located mainly at the regions of Hongliuxia, Kuantaishan, and Helishan that are close to the Altun fault. All these faults, which were related to the remote effects of collision between the two continents of India and Tibet during the Late Eocene and later, started to develop since the Late Tertiary and presented the features of violent thrust or strike-slip movement in Quaternary. Many of them are still active up to now and thus belong to the active faults that are the potential inducement of earthquakes in the Hexi Corridor. Moreover, a lot of intense structural deformation and many morphology phenomena such as tectonic terrace and river offset were formed under the control of these faults in Quaternary.展开更多
文摘目的主要开展钛合金表面制备Cr Al Ti N单层涂层后的撞击实验,探究不同条件下钛合金表面的冲蚀损伤规律,揭示钛合金表面的冲蚀损伤机理。方法采用多弧离子镀技术在TC4钛合金表面制备Cr Al Ti N单层涂层,并利用空气炮发射速度为300m/s的单个钢珠,在不同角度(30°、45°、60°、90°)下对涂层进行撞击损伤模拟。采用扫描电镜对撞击形貌进行观察,结合撞击表面的元素分析结果,探究钢珠撞击涂层表面的冲蚀损伤机理。结果 90°攻角下,涂层的破损主要由撞击产生的裂纹和涂层表面"液滴"的剥落共同作用引起。45°、30°攻角与60°攻角的撞击相似,损伤主要由两部分组成:一部分是垂直作用产生的裂纹和撞击导致的液滴剥落引起的涂层损伤;另一部分是切向作用引起的摩擦磨损和摩擦过程中产生的温度效应导致的钢珠熔覆。能谱图点44处主要含有Fe2O3、Ti N两种物质,说明该点的涂层已经破坏,并且在切削磨损的同时,钢珠撞击的损伤还伴随着氧化磨损。结论在300m/s的速度下,冲蚀损伤最严重部位为钢珠与涂层接触部位。冲蚀过程中会因温度效应使钢珠熔覆在涂层表面,涂层表面越粗糙,则熔覆物越多。涂层的损伤主要源于垂直分量导致裂纹的萌生和切向的犁削作用。
基金Project supported by the National Science and Technology Project of Tenth Five Years (No.2001BA605A06A)Science and Tech-nology Cooperation Program of SINOPEC (No.FYWX04-06),China
文摘Based on new high-resolution seismic profiles and existing structural and sedimentary results, a superposition deformation model for Cenozoic Bachu Uplift of northwestern Tarim Basin, northwestern China is proposed. The model presents the idea that the Bachu Uplift suffered structure superposition deformation under the dual influences of the Cenozoic uplifting of Southern Tianshan and Western Kunlun orogen, northwestern China. In the end of the Eocene (early Himalayan movement), Bachu Uplift started to be formed with the uplifting of Western Kunlun, and extended NNW into the interior of Kalpin Uplift. In the end of the Miocene (middle Himalayan movement), Bachu Uplift suffered not only the NNW structure deformation caused by the Western Kunlun uplifting, but also the NE structure deformation caused by the Southern Tianshan uplifting, and the thrust front fault of Kalpin thrust system related to the Southern Tianshan orogen intrudes southeastward into the hinterland of Bachu Uplift and extends NNE from well Pil to Xiaohaizi reservoir and Gudongshan mountain, which resulted in the strata folded and denuded strongly. In the end of the Pliocene (late Himalayan movement), the impact of Southern Yianshan orogen decreased because of the stress released with the breakthrough upward of Kalpin fault extending NE, and Bachu Uplift suffered mainly the structure deformation extending NW-NNW caused by the uplifting of Western Kunlun orogen.
文摘The structural analysis based on the explanation of seismic profiles indicates that a lot of thrust faults and strike-slip faults of Late Cenozoic occur in western Hexi Corridor and its nearby regions. They can be divided into two types. One is thrust faults dipping southwards and extending NWwards, which was mainly correlated with the thrusting of northern Qilianshan and located at the NE margin of Qilianshan and the southwestern Hexi Corridor, the other is thrust faults and strike-slip faults that were related to the strike-slipping of Altun fault and located mainly at the regions of Hongliuxia, Kuantaishan, and Helishan that are close to the Altun fault. All these faults, which were related to the remote effects of collision between the two continents of India and Tibet during the Late Eocene and later, started to develop since the Late Tertiary and presented the features of violent thrust or strike-slip movement in Quaternary. Many of them are still active up to now and thus belong to the active faults that are the potential inducement of earthquakes in the Hexi Corridor. Moreover, a lot of intense structural deformation and many morphology phenomena such as tectonic terrace and river offset were formed under the control of these faults in Quaternary.