The node-based smoothed finite element method(NS-FEM)is shortly presented for calculations of the static and seismic bearing capacities of shallow strip footings.A series of computations has been performed to assess v...The node-based smoothed finite element method(NS-FEM)is shortly presented for calculations of the static and seismic bearing capacities of shallow strip footings.A series of computations has been performed to assess variations in seismic bearing capacity factors with both horizontal and vertical seismic accelerations.Numerical results obtained agree very well with those using the slip-line method,revealing that the magnitude of the seismic bearing capacity is highly dependent upon the combinations of various directions of both components of the seismic acceleration.An upward vertical seismic acceleration reduces the seismic bearing capacity compared to the downward vertical seismic acceleration in calculations.In addition,particular emphasis is placed on a separate estimation of the effects of soil and superstructure inertia on each seismic bearing capacity component.While the effect of inertia forces arising in the soil on the seismic bearing capacity is non-trivial,and the superstructure inertia is the major contributor to reductions in the seismic bearing capacity.Both tables and charts are given for practical application to the seismic design of the foundations.展开更多
A numerical procedure using a stable cell-based smoothed finite element method(CS-FEM)is presented for estimation of stability of a square tunnel in the soil where the shear strength increases linearly with depth.The ...A numerical procedure using a stable cell-based smoothed finite element method(CS-FEM)is presented for estimation of stability of a square tunnel in the soil where the shear strength increases linearly with depth.The kinematically admissible displacement fields are approximated by uniform quadrilateral elements in conjunction with the strain smoothing technique,eliminating volumetric locking issues and the singularity associated with the MohreCoulomb model.First,a rich set of simulations was performed to compute the static stability of a square tunnel with different geometries and soil conditions.The presented results are in excellent agreement with the upper and lower bound solutions using the standard finite element method(FEM).The stability charts and tables are given for practical use in the tunnel design,along with a newly proposed formulation for predicting the undrained stability of a single square tunnel.Second,the seismic stability number was computed using the present numerical approach.Numerical results reveal that the seismic stability number reduces with an increasing value of the horizontal seismic acceleration(a_(h)),for both cases of the weightless soil and the soil with unit weight.Third,the link between the static and seismic stability numbers is described using corrective factors that represent reductions in the tunnel stability due to seismic loadings.It is shown from the numerical results that the corrective factor becomes larger as the unit weight of soil mass increases;however,the degree of the reduction in seismic stability number tends to reduce for the case of the homogeneous soil.Furthermore,this advanced numerical procedure is straightforward to extend to three-dimensional(3D)limit analysis and is readily applicable for the calculation of the stability of tunnels in highly anisotropic and heterogeneous soils which are often encountered in practice.展开更多
基金part of the TPS projecta Vied-Newton PhD scholarship+1 种基金a Dixon scholarship from Imperial College London,UKthe Dean’s Fund from Imperial College London for financial support(2017-2020)。
文摘The node-based smoothed finite element method(NS-FEM)is shortly presented for calculations of the static and seismic bearing capacities of shallow strip footings.A series of computations has been performed to assess variations in seismic bearing capacity factors with both horizontal and vertical seismic accelerations.Numerical results obtained agree very well with those using the slip-line method,revealing that the magnitude of the seismic bearing capacity is highly dependent upon the combinations of various directions of both components of the seismic acceleration.An upward vertical seismic acceleration reduces the seismic bearing capacity compared to the downward vertical seismic acceleration in calculations.In addition,particular emphasis is placed on a separate estimation of the effects of soil and superstructure inertia on each seismic bearing capacity component.While the effect of inertia forces arising in the soil on the seismic bearing capacity is non-trivial,and the superstructure inertia is the major contributor to reductions in the seismic bearing capacity.Both tables and charts are given for practical application to the seismic design of the foundations.
基金This is part of the TPS projecta Vied-Newton PhD scholarship and a Dixon scholarship from Imperial College London, UK, for supporting his studies at Imperial College Londonthe Dean’s Fund from Imperial College London for financial support (2017-2020).
文摘A numerical procedure using a stable cell-based smoothed finite element method(CS-FEM)is presented for estimation of stability of a square tunnel in the soil where the shear strength increases linearly with depth.The kinematically admissible displacement fields are approximated by uniform quadrilateral elements in conjunction with the strain smoothing technique,eliminating volumetric locking issues and the singularity associated with the MohreCoulomb model.First,a rich set of simulations was performed to compute the static stability of a square tunnel with different geometries and soil conditions.The presented results are in excellent agreement with the upper and lower bound solutions using the standard finite element method(FEM).The stability charts and tables are given for practical use in the tunnel design,along with a newly proposed formulation for predicting the undrained stability of a single square tunnel.Second,the seismic stability number was computed using the present numerical approach.Numerical results reveal that the seismic stability number reduces with an increasing value of the horizontal seismic acceleration(a_(h)),for both cases of the weightless soil and the soil with unit weight.Third,the link between the static and seismic stability numbers is described using corrective factors that represent reductions in the tunnel stability due to seismic loadings.It is shown from the numerical results that the corrective factor becomes larger as the unit weight of soil mass increases;however,the degree of the reduction in seismic stability number tends to reduce for the case of the homogeneous soil.Furthermore,this advanced numerical procedure is straightforward to extend to three-dimensional(3D)limit analysis and is readily applicable for the calculation of the stability of tunnels in highly anisotropic and heterogeneous soils which are often encountered in practice.