Brine shrimp(Artemia)has existed on Earth for 400 million years and has major ecological importance in hypersaline ecosystems.As a crucial live food in aquaculture,brine shrimp cysts have become one of the most import...Brine shrimp(Artemia)has existed on Earth for 400 million years and has major ecological importance in hypersaline ecosystems.As a crucial live food in aquaculture,brine shrimp cysts have become one of the most important aquatic products traded worldwide.However,our understanding of the biodiversity,prevalence and global connectedness of viruses in brine shrimp is still very limited.A total of 143 batches of brine shrimp(belonging to seven species)cysts were collected from six continents including 21 countries and more than 100 geographic locations worldwide during 1977–2019.In total,55 novel RNA viruses were identified,which could be assigned to 18 different viral families and related clades.Eleven viruses were dsRNA viruses,16 were+ssRNA viruses,and 28 were−ssRNA viruses.Phylogenetic analyses of the RNA-directed RNA polymerase(RdRp)showed that brine shrimp viruses were often grouped with viruses isolated from other invertebrates and fungi.Remarkably,most brine shrimp viruses were related to those from different hosts that might feed on brine shrimp or share the same ecological niche.A notable case was the novel brine shrimp noda-like virus 3,which shared 79.25%(RdRp)and 63.88%(capsid proteins)amino acid identity with covert mortality nodavirus(CMNV)that may cause losses in aquaculture.In addition,both virome composition and phylogenetic analyses revealed global connectedness in certain brine shrimp viruses,particularly among Asia and Northern America.This highlights the incredible species diversity of viruses in these ancient species and provides essential data for the prevalence of RNA viruses in the global aquaculture industry.More broadly,these findings provide novel insights into the previously unrecognized RNA virosphere in hypersaline ecosystems worldwide and demonstrate that human activity might have driven the global connectedness of brine shrimp viruses.展开更多
Photodynamic therapy (PDT) is a clinically approved cancer treatment that uses energy of light to generate active substances that cause damage to the cancer. Photosensitizers are employed to absorb light and generate ...Photodynamic therapy (PDT) is a clinically approved cancer treatment that uses energy of light to generate active substances that cause damage to the cancer. Photosensitizers are employed to absorb light and generate toxic reactive oxygen species (ROS) to damage biomolecules like DNA. At the same time, some chemotherapy drugs like nucleotide analogues can provide mechanism-guided promotion in the treatment efficacy of PDT. However, the photosensitizer and chemotherapy drugs used in PDT is usually organic molecules, which suffers from bad solubility, fast clearance, and acute toxicity. To achieve targeted treatment, a reasonable delivery system is necessary. Therefore, we reported a metal-phenolic network where IR780 and gemcitabine were coupled chemically to overcome these shortcomings. The enhanced PDT effects can be realized by the promoted cell death both in vitro and in vivo. Moreover, the synergistic therapy also induced T-cell mediated anti-tumor immune response, which was significant for the inhibition of distant tumor growth. This work expanded the biomedical application of metal-phenolic materials and contribute to the wider application of photodynamic cancer therapy.展开更多
Malignant melanoma cell-intrinsic PD-1:PD-L1 interaction thrusts tumorigenesis,angiogenesis,and radioresistance via mTOR hyperactivation to aggravate circumjacent aggression.Interdicting melanoma intrinsic growth sign...Malignant melanoma cell-intrinsic PD-1:PD-L1 interaction thrusts tumorigenesis,angiogenesis,and radioresistance via mTOR hyperactivation to aggravate circumjacent aggression.Interdicting melanoma intrinsic growth signals,including the blockade of PD-L1 and mTOR signaling concurrently,cooperative with radiotherapy may provide a vigorous repertoire to alleviate the tumor encumbrance.Thence,we design a three-pronged platinum@polymer-catechol nanobraker to deliver mTOR inhibitor TAK228 and anti-PD-L1 antibody(aPD-L1)for impeding the melanoma-PD-1-driven aggression and maximizing the melanoma eradication.The aPD-L1 collaborated with TAK228 restrains melanoma cell-intrinsic PD-1:PD-L1 tumorigenic interaction via blocking melanoma-PD-L1 ligand and the melanoma-PD-1 receptor-driven mTOR signaling;corresponding downregulation of mTOR downstream protumorigenic cellular MYC and proangiogenic hypoxia-inducible factor 1-alpha is conducive to preventing tumorigenesis and angiogenesis,respectively.Further,high-Z metal platinum sensitizing TAK228-enhanced radiotherapy confers the nanobraker on remarkable tumoricidal efficacy.Hereto,the customized three-pronged nanobrakers efficiently suppress melanoma tumorigenesis and angiogenesis concomitant with the amplification of radiotherapeutic efficacy.Such an ingenious tactic may provide substantial benefits to clinical melanoma patients.展开更多
Interferon-γ(IFN-γ),secreted by activated T cells predominantly,plays a crucial performance in the tumoricidal immune response.Unfortunately,a high level of IFN-γseverely ignites the immunosuppressive response,espe...Interferon-γ(IFN-γ),secreted by activated T cells predominantly,plays a crucial performance in the tumoricidal immune response.Unfortunately,a high level of IFN-γseverely ignites the immunosuppressive response,especially by increasing the expression of immune checkpoint programmed death-ligand 1(PD-L1)and immunoregulatory enzyme indoleamine 2,3-dioxygenase 1(IDO-1).Herein,we have explored a versatile IFN-γ-nano-integrator(aPD-L1-SH@Ce6@NLG919-PEG,simplified as CNDP)to establish a positive anti-tumor feedback loop to amplify the IFN-γ-mediated tumoricidal effect.In this nanointegrator,photosensitizer chlorin e6(Ce6)mediates photodynamic therapy(PDT)to re-shape immunogenicity and activate the adaptive immune response,followed by the secretion of high-level IFN-γto struggle tumor cells.IDO-1 inhibitor(NLG919)afterwards mitigates the immunosuppressive behavior of IFN-γby neutralizing the function of IDO-1.To turn“waste”into wealth,anti-PD-L1(aPD-L1)antibodies are technically integrated into the nano-integrator to propel the precise attack of breast cancer through ascending PD-L1 blockade.Together,this“three musketeers”nano-integrator tumoricidal tactic may give a unique insight into the clinical anti-tumor therapy.展开更多
Despite tremendous advances in gas therapy,there are major concerns about the inevitable concentration of toxicity and the ability to perform real-time tracking of drug delivery.Second near-infrared(NIR-Ⅱ)window abso...Despite tremendous advances in gas therapy,there are major concerns about the inevitable concentration of toxicity and the ability to perform real-time tracking of drug delivery.Second near-infrared(NIR-Ⅱ)window absorbing nanoplatforms hold great promise for precision medicine because of their excellent tissue penetration of light and non-invasive nature.In this study,we engineered an NIR-Ⅱlaser-activated theranostic agent(named CP-bF@PEG)that was composed of amphiphilic polymers(Pluronic F127,with polyethylene glycol,PEG,moieties)coated with an NIR-Ⅱ-absorbing conjugated polymer(PTTBBT,CP)and nitric oxide(NO)donor(benzofuroxan,bF),which served as an NIR-Ⅱphotothermal inducer and NO nanogenerator.Under deep tissue penetration of NIR-Ⅱlaser irradiation,CP-bF@PEG was found to possess fluorescence imaging ability to accurately identify tumor and excellent photothermal effect.Moreover,CP-bF@PEG could generate NO via glutathione activation in the tumor microenvironment in a controllable manner.This NIR-Ⅱ-absorbing polymer for high-contrast NIR-Ⅱfluorescence imaging-guided precision photothermal therapy achieved synergistic effects with NO therapy,as evidenced by pronounced tumor therapeutic efficacy and few side effects.This nanotheranostic agent is a highly promising candidate for high-contrast NIR-Ⅱimaging-guided precision photothermal therapy combined with gas therapy against cancer.展开更多
基金This work was supported by the National Key Research and Development Program of China(2018YFD0900501)Central Public-interest Scientific Institution Basal Research Fund,YSFRI,CAFS(20603022022005)+6 种基金Shinan District Science and Technology Foundation(Qingdao)(2022-2-027-ZH)Central Public-interest Scientific Institution Basal Research Fund,CAFS(2020TD39)China Agriculture Research System(CARS-48)C.L.was supported by the Youth Innovation Team of Shandong Higher Education Institution(2021KJ064)the National Natural Science Foundation of China(32200004)W.S.was supported by the Academic Promotion Programme of Shandong First Medical University(2019QL006)E.C.H.was funded by a National Medical Health and Research Council(Australia)Investigator Grant(GNT2017197).
文摘Brine shrimp(Artemia)has existed on Earth for 400 million years and has major ecological importance in hypersaline ecosystems.As a crucial live food in aquaculture,brine shrimp cysts have become one of the most important aquatic products traded worldwide.However,our understanding of the biodiversity,prevalence and global connectedness of viruses in brine shrimp is still very limited.A total of 143 batches of brine shrimp(belonging to seven species)cysts were collected from six continents including 21 countries and more than 100 geographic locations worldwide during 1977–2019.In total,55 novel RNA viruses were identified,which could be assigned to 18 different viral families and related clades.Eleven viruses were dsRNA viruses,16 were+ssRNA viruses,and 28 were−ssRNA viruses.Phylogenetic analyses of the RNA-directed RNA polymerase(RdRp)showed that brine shrimp viruses were often grouped with viruses isolated from other invertebrates and fungi.Remarkably,most brine shrimp viruses were related to those from different hosts that might feed on brine shrimp or share the same ecological niche.A notable case was the novel brine shrimp noda-like virus 3,which shared 79.25%(RdRp)and 63.88%(capsid proteins)amino acid identity with covert mortality nodavirus(CMNV)that may cause losses in aquaculture.In addition,both virome composition and phylogenetic analyses revealed global connectedness in certain brine shrimp viruses,particularly among Asia and Northern America.This highlights the incredible species diversity of viruses in these ancient species and provides essential data for the prevalence of RNA viruses in the global aquaculture industry.More broadly,these findings provide novel insights into the previously unrecognized RNA virosphere in hypersaline ecosystems worldwide and demonstrate that human activity might have driven the global connectedness of brine shrimp viruses.
基金the National Natural Science Foundation of China(NSFC,Nos.32171318,32222090 and 32101069)the Faculty of Health Sciences,University of Macao,the Multi-Year Research Grant(MYRG)of University of Macao(No.MYRG2022-00011-FHS)+2 种基金the Science and Technology Development Fund,Macao SAR(Nos.0103/2021/A and 0002/2021/AKP)Shenzhen Science and Technology Innovation Commission,Shenzhen-Hong Kong-Macao Science and Technology Plan C(No.SGDX20201103093600004)Dr.Stanley Ho Medical Development Foundation(No.SHMDF-OIRFS/2022/002)。
文摘Photodynamic therapy (PDT) is a clinically approved cancer treatment that uses energy of light to generate active substances that cause damage to the cancer. Photosensitizers are employed to absorb light and generate toxic reactive oxygen species (ROS) to damage biomolecules like DNA. At the same time, some chemotherapy drugs like nucleotide analogues can provide mechanism-guided promotion in the treatment efficacy of PDT. However, the photosensitizer and chemotherapy drugs used in PDT is usually organic molecules, which suffers from bad solubility, fast clearance, and acute toxicity. To achieve targeted treatment, a reasonable delivery system is necessary. Therefore, we reported a metal-phenolic network where IR780 and gemcitabine were coupled chemically to overcome these shortcomings. The enhanced PDT effects can be realized by the promoted cell death both in vitro and in vivo. Moreover, the synergistic therapy also induced T-cell mediated anti-tumor immune response, which was significant for the inhibition of distant tumor growth. This work expanded the biomedical application of metal-phenolic materials and contribute to the wider application of photodynamic cancer therapy.
基金This work was supported by the National Natural Science Foundation of China(NSFC 32171318 and 32101069)the Faculty of Health Sciences,University of Macao,the Science and Technology Development Fund,Macao SAR(File no.0109/2018/A3,0011/2019/AKP,0113/2019/A2,0103/2021/A,and 0002/2021/AKP)+1 种基金the Multi-Year Research Grant(MYRG)of University of Macao(File no.MYRG2022-00011-FHS)Shenzhen Science and Technology Innovation Commission,Shenzhen-Hong Kong-Macao Science and Technology Plan C(No.SGDX20201103093600004).
文摘Malignant melanoma cell-intrinsic PD-1:PD-L1 interaction thrusts tumorigenesis,angiogenesis,and radioresistance via mTOR hyperactivation to aggravate circumjacent aggression.Interdicting melanoma intrinsic growth signals,including the blockade of PD-L1 and mTOR signaling concurrently,cooperative with radiotherapy may provide a vigorous repertoire to alleviate the tumor encumbrance.Thence,we design a three-pronged platinum@polymer-catechol nanobraker to deliver mTOR inhibitor TAK228 and anti-PD-L1 antibody(aPD-L1)for impeding the melanoma-PD-1-driven aggression and maximizing the melanoma eradication.The aPD-L1 collaborated with TAK228 restrains melanoma cell-intrinsic PD-1:PD-L1 tumorigenic interaction via blocking melanoma-PD-L1 ligand and the melanoma-PD-1 receptor-driven mTOR signaling;corresponding downregulation of mTOR downstream protumorigenic cellular MYC and proangiogenic hypoxia-inducible factor 1-alpha is conducive to preventing tumorigenesis and angiogenesis,respectively.Further,high-Z metal platinum sensitizing TAK228-enhanced radiotherapy confers the nanobraker on remarkable tumoricidal efficacy.Hereto,the customized three-pronged nanobrakers efficiently suppress melanoma tumorigenesis and angiogenesis concomitant with the amplification of radiotherapeutic efficacy.Such an ingenious tactic may provide substantial benefits to clinical melanoma patients.
基金This work was supported by the National Natural Science Foundation of China(NSFC)(Nos.32171318 and 32101069)the Faculty of Health Sciences,University of Macao,the Start-up Research Grant(SRG)of University of Macao(No.SRG2018-00130-FHS)+2 种基金the Science and Technology Development Fund,Macao SAR(Nos.0109/2018/A3,0011/2019/AKP,0113/2019/A2,and 0103/2021/A)Shenzhen Science and Technology Innovation Commission,Shenzhen-Hong Kong-Macao Science and Technology Plan C(No.SGDX20201103093600004)We appreciate the assistance and support from the Proteomics,Metabolomics and Drug Development Core,Animal Research Core,and Biological Imaging and Stem Cell Core in the Faculty of Health Sciences,University of Macao.
文摘Interferon-γ(IFN-γ),secreted by activated T cells predominantly,plays a crucial performance in the tumoricidal immune response.Unfortunately,a high level of IFN-γseverely ignites the immunosuppressive response,especially by increasing the expression of immune checkpoint programmed death-ligand 1(PD-L1)and immunoregulatory enzyme indoleamine 2,3-dioxygenase 1(IDO-1).Herein,we have explored a versatile IFN-γ-nano-integrator(aPD-L1-SH@Ce6@NLG919-PEG,simplified as CNDP)to establish a positive anti-tumor feedback loop to amplify the IFN-γ-mediated tumoricidal effect.In this nanointegrator,photosensitizer chlorin e6(Ce6)mediates photodynamic therapy(PDT)to re-shape immunogenicity and activate the adaptive immune response,followed by the secretion of high-level IFN-γto struggle tumor cells.IDO-1 inhibitor(NLG919)afterwards mitigates the immunosuppressive behavior of IFN-γby neutralizing the function of IDO-1.To turn“waste”into wealth,anti-PD-L1(aPD-L1)antibodies are technically integrated into the nano-integrator to propel the precise attack of breast cancer through ascending PD-L1 blockade.Together,this“three musketeers”nano-integrator tumoricidal tactic may give a unique insight into the clinical anti-tumor therapy.
基金J.L.and L.X.contributed equally to this work.This work was sup-ported by the Faculty of Health Sciences,University of Macao,the Start-up Research Grant(SRG)of University of Macao(File No.SRG2018-00130-FHS)the Science and Technology Development Fund,Macao SAR(File Nos.0109/2018/A3 and 0011/2019/AKP)+1 种基金Shenzhen Science and Technology Innovation Commission,Shenzhen-Hong Kong-Macao Science and Technology Plan C,No.SGDX20201103093600004)The authors thank the Animal Research Core and Biological Imaging and Stem Cell Core in the Faculty of Health Sciences,University of Macao.The animal experimental procedures were conducted following an es-tablished protocol(UMARE-030-2018)that had previously been ap-proved by the University of Macao Animal Ethics Committee.
文摘Despite tremendous advances in gas therapy,there are major concerns about the inevitable concentration of toxicity and the ability to perform real-time tracking of drug delivery.Second near-infrared(NIR-Ⅱ)window absorbing nanoplatforms hold great promise for precision medicine because of their excellent tissue penetration of light and non-invasive nature.In this study,we engineered an NIR-Ⅱlaser-activated theranostic agent(named CP-bF@PEG)that was composed of amphiphilic polymers(Pluronic F127,with polyethylene glycol,PEG,moieties)coated with an NIR-Ⅱ-absorbing conjugated polymer(PTTBBT,CP)and nitric oxide(NO)donor(benzofuroxan,bF),which served as an NIR-Ⅱphotothermal inducer and NO nanogenerator.Under deep tissue penetration of NIR-Ⅱlaser irradiation,CP-bF@PEG was found to possess fluorescence imaging ability to accurately identify tumor and excellent photothermal effect.Moreover,CP-bF@PEG could generate NO via glutathione activation in the tumor microenvironment in a controllable manner.This NIR-Ⅱ-absorbing polymer for high-contrast NIR-Ⅱfluorescence imaging-guided precision photothermal therapy achieved synergistic effects with NO therapy,as evidenced by pronounced tumor therapeutic efficacy and few side effects.This nanotheranostic agent is a highly promising candidate for high-contrast NIR-Ⅱimaging-guided precision photothermal therapy combined with gas therapy against cancer.