The availability of nitrogen(N)is crucial for both the productivity of terrestrial and aquatic ecosystems globally.However,the overuse of artificial fertilizers and the energy required to fix nitrogen have pushed the ...The availability of nitrogen(N)is crucial for both the productivity of terrestrial and aquatic ecosystems globally.However,the overuse of artificial fertilizers and the energy required to fix nitrogen have pushed the global nitrogen cycle(N-cycle)past its safe operating limits,leading to severe nitrogen pollution and the production of significant amounts of greenhouse gas nitrous oxide(N2O).The anaerobic ammonium oxidation(anammox)mechanism can counteract the release of ammonium and N2O in many oxygenlimited situations,assisting in the restoration of the homeostasis of the Earth’s N biogeochemistry.In this work,we looked into the characteristics of the anammox hotspots’distribution across various types of ecosystems worldwide.Anammox hotspots are present at diverse oxic-anoxic interfaces in terrestrial systems,and they are most prevalent at the oxic-anoxic transition zone in aquatic ecosystems.Based on the discovery of an anammox hotspot capable of oxidizing ammonium anoxically into N2 without N2O by-product,we then designed an innovative concept and technical routes of nature-based anammox hotspot geoengineering for climate change,biodiversity loss,and efficient utilization of water resources.After 15 years of actual use,anammox hotspot geoengineering has proven to be effective in ensuring clean drinking water,regulating the climate,fostering plant and animal diversity,and enhancing longterm environmental quality.The sustainable biogeoengineering of anammox could be a workable natural remedy to resolve the conflicts between environmental pollution and food security connected to N management.展开更多
Paddy soils are an important source of atmospheric nitrous oxide(N_(2)O).However,numerous studies have focused on N_(2)O production during the soil tillage period,neglecting the N_(2)O production during the dry fallow...Paddy soils are an important source of atmospheric nitrous oxide(N_(2)O).However,numerous studies have focused on N_(2)O production during the soil tillage period,neglecting the N_(2)O production during the dry fallow period.In this study,we conducted an incubation experiment using the acetylene inhibition technique to investigate N_(2)O emission and reduction rates of paddy soil profiles(0-1 m)from Guangdong Province and Jinlin Province in China,with different heavy-metal pollution levels.The abundance and community structures of denitrifying bacteria were determined via quantitative-PCR and Illumina MiSeq sequencing of nosZ,nirK,and nirS genes.Our results showed that the potential N_(2)O emission rate,N_(2)O production rate,and denitrification rate have decreased with increasing soil vertical depth and heavy-metal pollution.More importantly,we found that the functional gene type of N_(2)O reductase switched with the tillage state of paddy soils,which cladeⅡnos Z genes were the dominant gene during the tillage period,while cladeⅠnos Z genes were the dominant gene during the dry fallow period.The heavy-metal pollution has less effect on the niche differentiation of the nos Z gene.The N_(2)O emission rate was significantly regulated by the genus Bradyhizobium,which contains both N_(2)O reductase and nitrite reductase genes.Our findings suggests that the nos Z gene of N_(2)O reductase can significantly impact the N_(2)O emission from paddy soils.展开更多
Corona virus disease 2019(COVID-19)has exerted a profound adverse impact on human health.Studies have demonstrated that aerosol transmission is one of the major transmission routes of severe acute respiratory syndrome...Corona virus disease 2019(COVID-19)has exerted a profound adverse impact on human health.Studies have demonstrated that aerosol transmission is one of the major transmission routes of severe acute respiratory syndrome coronavirus 2(SARS-CoV-2).Pathogenic microorganisms such as SARS-CoV-2 can survive in the air and cause widespread infection among people.Early monitoring of pathogenic microorganism transmission in the atmosphere and accurate epidemic prediction are the frontier guarantee for preventing large-scale epidemic outbreaks.Monitoring of pathogenic microorganisms in the air,especially in densely populated areas,may raise the possibility to detect viruses before people are widely infected and contain the epidemic at an earlier stage.The multi-scale coupled accurate epidemic prediction system can provide support for governments to analyze the epidemic situation,allocate health resources,and formulate epidemic response policies.This review first elaborates on the effects of the atmospheric environment on pathogenic microorganism transmission,which lays a theoretical foundation for the monitoring and prediction of epidemic development.Secondly,the monitoring technique development and the necessity of monitoring pathogenic microorganisms in the atmosphere are summarized and emphasized.Subsequently,this review introduces the major epidemic prediction methods and highlights the significance to realize a multi-scale coupled epidemic prediction system by strengthening the multidisciplinary cooperation of epidemiology,atmospheric sciences,environmental sciences,sociology,demography,etc.By summarizing the achievements and challenges in monitoring and prediction of pathogenic microorganism transmission in the atmosphere,this review proposes suggestions for epidemic response,namely,the establishment of an integrated monitoring and prediction platform for pathogenic microorganism transmission in the atmosphere.展开更多
This paper discusses the predefined practical finite-time(PPFT)dynamic positioning(DP)control problem for DP vessels subject to internal/external uncertainties.Those heterogeneity uncertainties are handled by a separa...This paper discusses the predefined practical finite-time(PPFT)dynamic positioning(DP)control problem for DP vessels subject to internal/external uncertainties.Those heterogeneity uncertainties are handled by a separate-type treatment approach.The finite-time(FT)DP control is fulfilled by a predefined FT function on the basis of a time-based generator(TBG).Under the dynamic surface control together with the TBG design framework,the convergence time and control accuracy of the DP system can be determined by the designer offline.Meanwhile,the virtual derivation and computational burden problems are dissolved by using a first-order filter and virtual parameter learning technique.To reduce mechanical wear,an event-triggering protocol between the control law and the actuator is built to reduce the operating frequency of the actuator.An event-triggered neuroadaptive PPFT control scheme is presented for DP vessels.The stability of the closed-loop DP control systems is validated via the Lyapunov theorem.Approach efficiency is confirmed by numerical examples.展开更多
Lake littoral zones are characterized by heterogeneity in the biogeochemistry of nutrient elements. This study aimed to explore the relationship between the nitrous oxide reductase gene (nosZ)-encoding denitrifier c...Lake littoral zones are characterized by heterogeneity in the biogeochemistry of nutrient elements. This study aimed to explore the relationship between the nitrous oxide reductase gene (nosZ)-encoding denitrifier community composition/abundance and N2O reduction. Five samples (deep sediment, near-transition sediment, transition site, near-transition land and land soil) were collected along a littoral gradient of eutrophic Baiyangdian Lake, North China. To investigate the relationship between the nosZ-encoding denitrifier community structure and N20 reduction, the nosZ-encoding denitrifier community composition/abundance, potential denitrification rate (DNR) and potential N20 production rate (pN20) were investigated using molecular biological technologies and laboratory incubation experiments. The results showed that the average DNR of sediments was about 25 times higher than that of land soils, reaching 282.5 nmol N/(g dry weight (dw).hr) and that the average pN20 of sediments was about 3.5 times higher than that of land soils, reaching 15.7 nmol N/(g dw-hr). In the land area, the nosZ gene abundance showed a negative correlation with the N20/(N20+N2) ratio, indicating that nosZ gene abundance dominated N20 reduction both in the surface soils of the land area and in the soil core of the transition site. Phylogenetic analysis showed that all the nosZ sequences recovered from sediment clustered closely with the isolates Azospirillum largimobile and Azospirillum irakense affiliated to Rhodospirillaceae in alpha-Proteobacteria, while about 92.3% (12/13) of the nosZ sequences recovered from land soil affiliated to Rhizobiaceae and Bradyrhizobiaceae in a-Proteobacteria. The community composition of nosZ gene-encoding denitrifiers appeared to be coupled with N20 reduction along the littoral gradient.展开更多
Denitrifying phosphorus accumulating organ- isms (DPAOs) using nitrite as an electron acceptor can reduce more energy. However, nitrite has been reported to have an inhibition on denitrifying phosphorus removal. In ...Denitrifying phosphorus accumulating organ- isms (DPAOs) using nitrite as an electron acceptor can reduce more energy. However, nitrite has been reported to have an inhibition on denitrifying phosphorus removal. In this study, the step-feed strategy was proposed to achieve low nitrite concentration, which can avoid or relieve nitrite inhibition. The results showed that denitrification rate, phosphorus uptake rate and the ratio of the phosphorus uptaken to nitrite denitrified (anoxic P/N ratio) increased when the nitrite concentration was 15 rag. L-1 after step- feeding nitrite. The maximum denitrification rate and phosphorus uptake rate was 12.73 mg NO2-N.g MLSS- 1· h- 1 and 18.75 mg PO34--P- g MLSS- 1. h- 1, respec- tively. These rates were higher than that using nitrate (15 mg. L-l) as an electron acceptor. The maximum anoxic P/N ratio was 1.55 mg PO43- -Pmg NO2-N-1. When the nitrite concentration increased from 15 to 20 mg NO2 -N ~ L-I after addition of nitrite, the anoxic phosphorus uptake was inhibited by 64.85%, and the denitrification by DPAOs was inhibited by 61.25%. Denitrification rate by DPAOs decreased gradually when nitrite (about 20 mg · L-1) was added in the step-feed SBR. These results indicated that the step-feed strategy can be used to achieve denitrifying phosphorus removal using nitrite as an electron acceptor, and nitrite concentration should be maintained at low level ( 〈 15 mg. L-1 in this study).展开更多
With the increasing application of anammox for the treatment of high-strength industrial wastewater,application of anammox in municipal sewage has been gaining more attention.Sludge granulation in particular enhances ...With the increasing application of anammox for the treatment of high-strength industrial wastewater,application of anammox in municipal sewage has been gaining more attention.Sludge granulation in particular enhances the enrichment and retention of anammox bacteria in municipal sewage treatment systems.However,the performance of granular sludge under continuous and varying hydraulic loading shock remains little understood.In this study,the robustness of anammox granular sludge in treating lowstrength municipal sewage under various shock loadings was investigated.Results showed that an upflow anaerobic sludge blanket(UASB)reactor with anammox granules performed well,with anammox specific activity up to 0.28 kg N/kg VSS/day and anti-loading shock capability up to 187.2 L/day during the 8-month testing period.The accumulation rate of N2O(<0.01 kg N/kg VSS/day)in the liquid phase was seven times higher than that of the gas phase,which could be mainly attributed to the incomplete denitrification and insufficient carbon source.However,only a small part of the produced N2O escaped into the atmosphere.High-throughput sequencing and molecular ecological network analyses also identified the bacterial diversity and community structure,indicating the potential resistance against loading shock.The composition and structural analyses showed that polysaccharides were an important functional component in the tightly bound extracellular polymeric substances(TB-EPS),which was the major EPS layer of anammox granules.Scanning electron microscopy(SEM)also showed that the gaps in between the anammoxclusters in the granules inhibit the flotation of the sludge and ensure efficient settling and retention of anammox granules.展开更多
The diversity of Planctomycetes and related bacteria in 3 types of freshwater wetlands with different anthropogenic disturbances were investigated by cloning and sequencing PCR-amplified partial 16S rRNA genes. Three ...The diversity of Planctomycetes and related bacteria in 3 types of freshwater wetlands with different anthropogenic disturbances were investigated by cloning and sequencing PCR-amplified partial 16S rRNA genes. Three clone libraries were constructed using 16S rRNA-targeted forward PCR primer specific for Planctomycetales and general bacterial reverse primer. Phylogenetic analysis of the 16S rRNA gene sequences defined 95 operational taxonomic units (OTUs) with 163 sequences. The clone libraries covered a wide microbial diversity of Proteobacteria and the Planctomycetes-Verrucomicrobia-Chlamydiales (PVC) superphylum. The majority of the OTUs were related to the phylum of Planctomycetes (33 OTUs), Proteobacteria (22 OTUs) and Verrucomicrobia (22 OTUs). Four known genera from the Planctomycetes phylum were all detected. The genus Pirellula (18 OTUs) dominated the Planctomycetes community, but different patterns of distribution were observed in the wetlands. The littoral wetlands of Baiyangdian Lake with the least anthropogenic disturbances covered more species and showed the highest biodiversity. However, the Jiaxing paddy fields with the highest anthropogenic disturbances showed a higher biodiversity than that in the riparian wetlands of the North Canal. Bacteria distantly related to anammox bacteria were also detected with a small proportion (4 OTUs). It showed that wetlands hold a great biodiversity of phyla Planctomycetes and related bacteria; furthermore, there is ample opportunity to discover novel phylotypes of Planctomycetes in the wetland ecosystems.展开更多
基金supported by the National Natural Science Foundation of China(91851204 and 42021005)the Special project of eco-environmental technology for peak carbon dioxide emissions and carbon neutrality(RCEES-TDZ-2021-20).
文摘The availability of nitrogen(N)is crucial for both the productivity of terrestrial and aquatic ecosystems globally.However,the overuse of artificial fertilizers and the energy required to fix nitrogen have pushed the global nitrogen cycle(N-cycle)past its safe operating limits,leading to severe nitrogen pollution and the production of significant amounts of greenhouse gas nitrous oxide(N2O).The anaerobic ammonium oxidation(anammox)mechanism can counteract the release of ammonium and N2O in many oxygenlimited situations,assisting in the restoration of the homeostasis of the Earth’s N biogeochemistry.In this work,we looked into the characteristics of the anammox hotspots’distribution across various types of ecosystems worldwide.Anammox hotspots are present at diverse oxic-anoxic interfaces in terrestrial systems,and they are most prevalent at the oxic-anoxic transition zone in aquatic ecosystems.Based on the discovery of an anammox hotspot capable of oxidizing ammonium anoxically into N2 without N2O by-product,we then designed an innovative concept and technical routes of nature-based anammox hotspot geoengineering for climate change,biodiversity loss,and efficient utilization of water resources.After 15 years of actual use,anammox hotspot geoengineering has proven to be effective in ensuring clean drinking water,regulating the climate,fostering plant and animal diversity,and enhancing longterm environmental quality.The sustainable biogeoengineering of anammox could be a workable natural remedy to resolve the conflicts between environmental pollution and food security connected to N management.
基金supported by the National Natural Science Foundation of China (Nos.91851204 and 92251304)the Excellent Innovation Project of Research Center for EcoEnvironmental Sciences,Chinese Academy of Sciences (No.RCEES-EEI-2019-02)the Program of the Youth Innovation Promotion Association of Chinese Academy of Sciences。
文摘Paddy soils are an important source of atmospheric nitrous oxide(N_(2)O).However,numerous studies have focused on N_(2)O production during the soil tillage period,neglecting the N_(2)O production during the dry fallow period.In this study,we conducted an incubation experiment using the acetylene inhibition technique to investigate N_(2)O emission and reduction rates of paddy soil profiles(0-1 m)from Guangdong Province and Jinlin Province in China,with different heavy-metal pollution levels.The abundance and community structures of denitrifying bacteria were determined via quantitative-PCR and Illumina MiSeq sequencing of nosZ,nirK,and nirS genes.Our results showed that the potential N_(2)O emission rate,N_(2)O production rate,and denitrification rate have decreased with increasing soil vertical depth and heavy-metal pollution.More importantly,we found that the functional gene type of N_(2)O reductase switched with the tillage state of paddy soils,which cladeⅡnos Z genes were the dominant gene during the tillage period,while cladeⅠnos Z genes were the dominant gene during the dry fallow period.The heavy-metal pollution has less effect on the niche differentiation of the nos Z gene.The N_(2)O emission rate was significantly regulated by the genus Bradyhizobium,which contains both N_(2)O reductase and nitrite reductase genes.Our findings suggests that the nos Z gene of N_(2)O reductase can significantly impact the N_(2)O emission from paddy soils.
基金the Collaborative Research Project of the National Natural Science Foundation of China(L2224041)the Chinese Academy of Sciences(XK2022DXC005)+2 种基金Frontier of Interdisciplinary Research on Monitoring and Prediction of Pathogenic Microorganisms in the AtmosphereSelf-supporting Program of Guangzhou Laboratory(SRPG22-007)Fundamental Research Funds for the Central Universities(lzujbky-2022-kb09).
文摘Corona virus disease 2019(COVID-19)has exerted a profound adverse impact on human health.Studies have demonstrated that aerosol transmission is one of the major transmission routes of severe acute respiratory syndrome coronavirus 2(SARS-CoV-2).Pathogenic microorganisms such as SARS-CoV-2 can survive in the air and cause widespread infection among people.Early monitoring of pathogenic microorganism transmission in the atmosphere and accurate epidemic prediction are the frontier guarantee for preventing large-scale epidemic outbreaks.Monitoring of pathogenic microorganisms in the air,especially in densely populated areas,may raise the possibility to detect viruses before people are widely infected and contain the epidemic at an earlier stage.The multi-scale coupled accurate epidemic prediction system can provide support for governments to analyze the epidemic situation,allocate health resources,and formulate epidemic response policies.This review first elaborates on the effects of the atmospheric environment on pathogenic microorganism transmission,which lays a theoretical foundation for the monitoring and prediction of epidemic development.Secondly,the monitoring technique development and the necessity of monitoring pathogenic microorganisms in the atmosphere are summarized and emphasized.Subsequently,this review introduces the major epidemic prediction methods and highlights the significance to realize a multi-scale coupled epidemic prediction system by strengthening the multidisciplinary cooperation of epidemiology,atmospheric sciences,environmental sciences,sociology,demography,etc.By summarizing the achievements and challenges in monitoring and prediction of pathogenic microorganism transmission in the atmosphere,this review proposes suggestions for epidemic response,namely,the establishment of an integrated monitoring and prediction platform for pathogenic microorganism transmission in the atmosphere.
基金supported in part by the National Natural Science Foundation of China(52022073,62073251 and 52261160383)in part by the Excellent Youth Foundation of Hubei Scientific Committee(2020CFA055)+4 种基金in part by the Natural Science Foundation of Zhejiang Province(LY21E090005)in part by the Innovation Research Team Project of the Hainan Natural Science Foundation(722CXTD518)in part by the Knowledge Innovation Program of Wuhan-Basic Research(2022010801010181)in part by the Science and Technology Project of Zhoushan(2022C41006)in part by the Hubei Key Laboratory of Inland Shipping Technology(NHHY2020004).
文摘This paper discusses the predefined practical finite-time(PPFT)dynamic positioning(DP)control problem for DP vessels subject to internal/external uncertainties.Those heterogeneity uncertainties are handled by a separate-type treatment approach.The finite-time(FT)DP control is fulfilled by a predefined FT function on the basis of a time-based generator(TBG).Under the dynamic surface control together with the TBG design framework,the convergence time and control accuracy of the DP system can be determined by the designer offline.Meanwhile,the virtual derivation and computational burden problems are dissolved by using a first-order filter and virtual parameter learning technique.To reduce mechanical wear,an event-triggering protocol between the control law and the actuator is built to reduce the operating frequency of the actuator.An event-triggered neuroadaptive PPFT control scheme is presented for DP vessels.The stability of the closed-loop DP control systems is validated via the Lyapunov theorem.Approach efficiency is confirmed by numerical examples.
基金supported by the National Natural Science Foundation of China (No.21077119)the National Basic Research Program of China(No. 2009CB421103)+3 种基金the Key Project of Water Pollution Control and Management of China (No.2008ZX07209-006, 2009ZX07209-005 and 2008ZX07421-001)the Special Fund of Tianjin Science and Technology Innovation Project (No. 08FDZDSF03200)the support of the Beijing Nova Program (No. 2011095)the K. C. Wong Education Foundation, Hong Kong, China
文摘Lake littoral zones are characterized by heterogeneity in the biogeochemistry of nutrient elements. This study aimed to explore the relationship between the nitrous oxide reductase gene (nosZ)-encoding denitrifier community composition/abundance and N2O reduction. Five samples (deep sediment, near-transition sediment, transition site, near-transition land and land soil) were collected along a littoral gradient of eutrophic Baiyangdian Lake, North China. To investigate the relationship between the nosZ-encoding denitrifier community structure and N20 reduction, the nosZ-encoding denitrifier community composition/abundance, potential denitrification rate (DNR) and potential N20 production rate (pN20) were investigated using molecular biological technologies and laboratory incubation experiments. The results showed that the average DNR of sediments was about 25 times higher than that of land soils, reaching 282.5 nmol N/(g dry weight (dw).hr) and that the average pN20 of sediments was about 3.5 times higher than that of land soils, reaching 15.7 nmol N/(g dw-hr). In the land area, the nosZ gene abundance showed a negative correlation with the N20/(N20+N2) ratio, indicating that nosZ gene abundance dominated N20 reduction both in the surface soils of the land area and in the soil core of the transition site. Phylogenetic analysis showed that all the nosZ sequences recovered from sediment clustered closely with the isolates Azospirillum largimobile and Azospirillum irakense affiliated to Rhodospirillaceae in alpha-Proteobacteria, while about 92.3% (12/13) of the nosZ sequences recovered from land soil affiliated to Rhizobiaceae and Bradyrhizobiaceae in a-Proteobacteria. The community composition of nosZ gene-encoding denitrifiers appeared to be coupled with N20 reduction along the littoral gradient.
文摘Denitrifying phosphorus accumulating organ- isms (DPAOs) using nitrite as an electron acceptor can reduce more energy. However, nitrite has been reported to have an inhibition on denitrifying phosphorus removal. In this study, the step-feed strategy was proposed to achieve low nitrite concentration, which can avoid or relieve nitrite inhibition. The results showed that denitrification rate, phosphorus uptake rate and the ratio of the phosphorus uptaken to nitrite denitrified (anoxic P/N ratio) increased when the nitrite concentration was 15 rag. L-1 after step- feeding nitrite. The maximum denitrification rate and phosphorus uptake rate was 12.73 mg NO2-N.g MLSS- 1· h- 1 and 18.75 mg PO34--P- g MLSS- 1. h- 1, respec- tively. These rates were higher than that using nitrate (15 mg. L-l) as an electron acceptor. The maximum anoxic P/N ratio was 1.55 mg PO43- -Pmg NO2-N-1. When the nitrite concentration increased from 15 to 20 mg NO2 -N ~ L-I after addition of nitrite, the anoxic phosphorus uptake was inhibited by 64.85%, and the denitrification by DPAOs was inhibited by 61.25%. Denitrification rate by DPAOs decreased gradually when nitrite (about 20 mg · L-1) was added in the step-feed SBR. These results indicated that the step-feed strategy can be used to achieve denitrifying phosphorus removal using nitrite as an electron acceptor, and nitrite concentration should be maintained at low level ( 〈 15 mg. L-1 in this study).
基金financially supported by the National Natural Science Foundation of China (Nos. 21707155, 41671471, 41322012 and 91851204)the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB15020303)+4 种基金the National Key R&D Program (No. 2016YFA0602303)the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program (No. 2017BT01Z176)the special fund from the State Key Joint Laboratory of Environment Simulation and Pollution Control (Research Center for Eco-environmental Sciences, Chinese Academy of Sciences) (No. 18Z02ESPCR)the support of a Humboldt Research Fellowship (No. 1152633)Program of the Youth Innovation Promotion Association (CAS)
文摘With the increasing application of anammox for the treatment of high-strength industrial wastewater,application of anammox in municipal sewage has been gaining more attention.Sludge granulation in particular enhances the enrichment and retention of anammox bacteria in municipal sewage treatment systems.However,the performance of granular sludge under continuous and varying hydraulic loading shock remains little understood.In this study,the robustness of anammox granular sludge in treating lowstrength municipal sewage under various shock loadings was investigated.Results showed that an upflow anaerobic sludge blanket(UASB)reactor with anammox granules performed well,with anammox specific activity up to 0.28 kg N/kg VSS/day and anti-loading shock capability up to 187.2 L/day during the 8-month testing period.The accumulation rate of N2O(<0.01 kg N/kg VSS/day)in the liquid phase was seven times higher than that of the gas phase,which could be mainly attributed to the incomplete denitrification and insufficient carbon source.However,only a small part of the produced N2O escaped into the atmosphere.High-throughput sequencing and molecular ecological network analyses also identified the bacterial diversity and community structure,indicating the potential resistance against loading shock.The composition and structural analyses showed that polysaccharides were an important functional component in the tightly bound extracellular polymeric substances(TB-EPS),which was the major EPS layer of anammox granules.Scanning electron microscopy(SEM)also showed that the gaps in between the anammoxclusters in the granules inhibit the flotation of the sludge and ensure efficient settling and retention of anammox granules.
基金the projects of National Natural Science Foundation of China(21077119)National Basic Research Program of China(2009CB421103)+2 种基金Special Fund of State Key Joint Laboratory of Environment Simulation and Pollution Control(12L03ESPC)Beijing Nova Program(2011095)K.C.Wong Education Foundation,Hong Kong
文摘The diversity of Planctomycetes and related bacteria in 3 types of freshwater wetlands with different anthropogenic disturbances were investigated by cloning and sequencing PCR-amplified partial 16S rRNA genes. Three clone libraries were constructed using 16S rRNA-targeted forward PCR primer specific for Planctomycetales and general bacterial reverse primer. Phylogenetic analysis of the 16S rRNA gene sequences defined 95 operational taxonomic units (OTUs) with 163 sequences. The clone libraries covered a wide microbial diversity of Proteobacteria and the Planctomycetes-Verrucomicrobia-Chlamydiales (PVC) superphylum. The majority of the OTUs were related to the phylum of Planctomycetes (33 OTUs), Proteobacteria (22 OTUs) and Verrucomicrobia (22 OTUs). Four known genera from the Planctomycetes phylum were all detected. The genus Pirellula (18 OTUs) dominated the Planctomycetes community, but different patterns of distribution were observed in the wetlands. The littoral wetlands of Baiyangdian Lake with the least anthropogenic disturbances covered more species and showed the highest biodiversity. However, the Jiaxing paddy fields with the highest anthropogenic disturbances showed a higher biodiversity than that in the riparian wetlands of the North Canal. Bacteria distantly related to anammox bacteria were also detected with a small proportion (4 OTUs). It showed that wetlands hold a great biodiversity of phyla Planctomycetes and related bacteria; furthermore, there is ample opportunity to discover novel phylotypes of Planctomycetes in the wetland ecosystems.