期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
UNIFORMLY-STABLE FINITE ELEMENT METHODS FOR DARCY-STOKES-BRINKMAN MODELS 被引量:23
1
作者 Xiaoping Xie Jinchao Xu guangri xue 《Journal of Computational Mathematics》 SCIE EI CSCD 2008年第3期437-455,共19页
In this paper, we consider 2D and 3D Darcy-Stokes interface problems. These equations are related to Brinkman model that treats both Darcy's law and Stokes equations in a single form of PDE but with strongly disconti... In this paper, we consider 2D and 3D Darcy-Stokes interface problems. These equations are related to Brinkman model that treats both Darcy's law and Stokes equations in a single form of PDE but with strongly discontinuous viscosity coefficient and zerothorder term coefficient. We present three different methods to construct uniformly stable finite element approximations. The first two methods are based on the original weak formulations of Darcy-Stokes-Brinkman equations. In the first method we consider the existing Stokes elements. We show that a stable Stokes element is also uniformly stable with respect to the coefficients and the jumps of Darcy-Stokes-Brinkman equations if and only if the discretely divergence-free velocity implies almost everywhere divergence-free one. In the second method we construct uniformly stable elements by modifying some well-known H(div)-conforming elements. We give some new 2D and 3D elements in a unified way. In the last method we modify the original weak formulation of Darcy-Stokes- Brinkman equations with a stabilization term. We show that all traditional stable Stokes elements are uniformly stable with respect to the coefficients and their jumps under this new formulation. 展开更多
关键词 Darcy-Stokes equation Brinkman Finite element Uniformly stable
原文传递
Fast Numerical Simulation of Two-Phase Transport Model in the Cathode of a Polymer Electrolyte Fuel Cell 被引量:1
2
作者 Pengtao Sun guangri xue +1 位作者 Chaoyang Wang Jinchao Xu 《Communications in Computational Physics》 SCIE 2009年第6期49-71,共23页
In this paper,we apply streamline-diffusion and Galerkin-least-squares fi-nite element methods for 2D steady-state two-phase model in the cathode of polymer electrolyte fuel cell(PEFC)that contains a gas channel and a... In this paper,we apply streamline-diffusion and Galerkin-least-squares fi-nite element methods for 2D steady-state two-phase model in the cathode of polymer electrolyte fuel cell(PEFC)that contains a gas channel and a gas diffusion layer(GDL).This two-phase PEFC model is typically modeled by a modified Navier-Stokes equation for the mass and momentum,with Darcy’s drag as an additional source term in momentum for flows through GDL,and a discontinuous and degenerate convectiondiffusion equation for water concentration.Based on the mixed finite element method for the modified Navier-Stokes equation and standard finite element method for water equation,we design streamline-diffusion and Galerkin-least-squares to overcome the dominant convection arising from the gas channel.Meanwhile,we employ Kirchhoff transformation to deal with the discontinuous and degenerate diffusivity in water concentration.Numerical experiments demonstrate that our finite element methods,together with these numerical techniques,are able to get accurate physical solutions with fast convergence. 展开更多
关键词 Two-phase model polymer electrolyte fuel cell Kirchhoff transformation convection dominated diffusion problem streamline diffusion Galerkin-least-squares
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部