期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Effects of O_(2)adsorption on secondary electron emission properties
1
作者 杨兆伦 杨晶 +7 位作者 何鋆 胡天存 王新波 张娜 陈泽煜 苗光辉 张雨婷 崔万照 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第4期663-669,共7页
The surface adsorption of gas molecules is a key factor limiting the secondary electron yield(SEY)of a material in many areas of applied physics.The influence of O_(2)adsorption on the SEY of metallic Ag is investigat... The surface adsorption of gas molecules is a key factor limiting the secondary electron yield(SEY)of a material in many areas of applied physics.The influence of O_(2)adsorption on the SEY of metallic Ag is investigated in this work.To account for the particle distribution,we propose a BET theory based on multilayer O_(2)physisorption model.Furthermore,based on the phenomenological model of secondary electron(SE)emission and by taking into account the different scattering processes between electrons and particles in the adsorbed layer,we develop a numerical model of SEY in the adsorbed state using Monte Carlo simulations.The relationships among O_(2)adsorption,adsorption layer thickness,and SEY variation characteristics are then examined through a series of experiments.After 12-h exposure to O_(2),the clean samples increases12%-19%of the maximum value of SEY and 2.3 nm in thickness of the adsorbed layer.Experimental results are also compared with the results from the MC model to determine whether the model is accurate. 展开更多
关键词 multilayer adsorption model secondary electron Monte Carlo simulation gas adsorption experiments
在线阅读 下载PDF
Analysis of secondary electron emission using the fractal method
2
作者 Chun-Jiang Bai Tian-Cun Hu +4 位作者 Yun He guang-hui miao Rui Wang Na Zhang Wan-Zhao Cui 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第1期537-544,共8页
Based on the rough surface topography with fractal parameters and the Monte–Carlo simulation method for secondary electron emission properties, we analyze the secondary electron yield(SEY) of a metal with rough surfa... Based on the rough surface topography with fractal parameters and the Monte–Carlo simulation method for secondary electron emission properties, we analyze the secondary electron yield(SEY) of a metal with rough surface topography. The results show that when the characteristic length scale of the surface, G, is larger than 1 × 10^(-7), the surface roughness increases with the increasing fractal dimension D. When the surface roughness becomes larger, it is difficult for entered electrons to escape surface. As a result, more electrons are collected and then SEY decreases. When G is less than 1 × 10^(-7),the effect of the surface topography can be ignored, and the SEY almost has no change as the dimension D increases. Then,the multipactor thresholds of a C-band rectangular impedance transfer and an ultrahigh-frequency-band coaxial impedance transfer are predicted by the relationship between the SEY and the fractal parameters. It is verified that for practical microwave devices, the larger the parameter G is, the higher the multipactor threshold is. Also, the larger the value of D,the higher the multipactor threshold. 展开更多
关键词 secondary electron emission yield the fractal method MULTIPACTOR
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部