期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Numerical Solutions of the Classical and Modified Buckley-Leverett Equations Applied to Two-Phase Fluid Flow
1
作者 Raphael de O. Garcia graciele p. silveira 《Open Journal of Fluid Dynamics》 2024年第3期184-204,共21页
Climate change is a reality. The burning of fossil fuels from oil, natural gas and coal is responsible for much of the pollution and the increase in the planet’s average temperature, which has raised discussions on t... Climate change is a reality. The burning of fossil fuels from oil, natural gas and coal is responsible for much of the pollution and the increase in the planet’s average temperature, which has raised discussions on the subject, given the emergencies related to climate. An energy transition to clean and renewable sources is necessary and urgent, but it will not be quick. In this sense, increasing the efficiency of oil extraction from existing sources is crucial, to avoid waste and the drilling of new wells. The purpose of this work was to add diffusive and dispersive terms to the Buckley-Leverett equation in order to incorporate extra phenomena in the temporal evolution between the water-oil and oil-water transitions in the pipeline. For this, the modified Buckley-Leverett equation was discretized via essentially weighted non-oscillatory schemes, coupled with a three-stage Runge-Kutta and a fourth-order centered finite difference methods. Then, computational simulations were performed and the results showed that new features emerge in the transitions, when compared to classical simulations. For instance, the dispersive term inhibits the diffusive term, adding oscillations, which indicates that the absorption of the fluid by the porous medium occurs in a non-homogeneous manner. Therefore, based on research such as this, decisions can be made regarding the replacement of the porous medium or the insertion of new components to delay the replacement. 展开更多
关键词 Computational Fluid Dynamics Buckley-Leverett Equation Numerical Methods Two-phase Fluid Flow
在线阅读 下载PDF
Numerical Simulation of Saint-Venant Equations with Thermal Energy Dependency: Applications on Global Warming
2
作者 Raphael de O. Garcia graciele p. silveira 《Open Journal of Fluid Dynamics》 2023年第4期191-205,共15页
Since the Industrial Revolution, humanity has been intensifying the burning of fossil fuels and as a consequence, the average temperature on Earth has been increasing. The 20th century was the warmest and future prosp... Since the Industrial Revolution, humanity has been intensifying the burning of fossil fuels and as a consequence, the average temperature on Earth has been increasing. The 20th century was the warmest and future prospects are not favorable, that is, even higher temperatures are expected. This demonstrates the importance of studies on the subject, mainly to predict possible environmental, social and economic consequences. The objective of this work was to identify the interference of the increase in ambient temperature in the dynamics of fluids, such as ocean waves advancing over the continent. For this, thermal energy was considered in the Saint-Venant equations and computational implementations were performed via Lax-Friedrichs and Adams-Moulton methods. The results indicated that, in fact, depending on the amount of thermal energy transferred to the fluid, the advance of water towards the continent can occur, even in places where such a phenomenon has never been observed. 展开更多
关键词 Computational Fluid Dynamics Saint-Venant Equations Numerical Methods Global Warming
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部