期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于强化学习的连续泊位岸桥联合调度优化研究
1
作者 邓涵毅 梁承姬 +2 位作者 SHI Jian 王钰 gino lim 《运筹与管理》 CSSCI CSCD 北大核心 2024年第9期15-21,共7页
为了提高算法在大规模问题上的求解速度,提高集装箱码头的船舶周转速度。本文针对船舶泊位分配与岸桥调度都具有时序性,提出了一种包含状态、动作和奖励函数的马尔科夫决策过程的强化学习调度算法。在考虑泊位分配与岸桥数量调度问题的... 为了提高算法在大规模问题上的求解速度,提高集装箱码头的船舶周转速度。本文针对船舶泊位分配与岸桥调度都具有时序性,提出了一种包含状态、动作和奖励函数的马尔科夫决策过程的强化学习调度算法。在考虑泊位分配与岸桥数量调度问题的基础上,研究了同时决策泊位分配与岸桥调度,并考虑岸桥移动与具体岸桥编号分配的动态调度方法,建立了目标为船舶在港时间最短的连续泊位岸桥联合调度的数学模型。实验结果表明强化学习算法在大规模数据上求解速度明显比遗传算法和CPLEX快,解的质量也是相对优秀,证明了算法的有效性与优越性。为了改进该算法本文最后分析了强化学习算法的学习率、动作选择概率和折扣因子对结果的影响。 展开更多
关键词 集装箱港口 泊位与岸桥联合调度 马尔科夫决策过程 强化学习
在线阅读 下载PDF
An Automatic Approach for Satisfying Dose-Volume Constraints in Linear Fluence Map Optimization for IMPT
2
作者 Maryam Zaghian gino lim +1 位作者 Wei Liu Radhe Mohan 《Journal of Cancer Therapy》 2014年第2期198-207,共10页
Prescriptions for radiation therapy are given in terms of dose-volume constraints (DVCs). Solving the fluence map optimization (FMO) problem while satisfying DVCs often requires a tedious trial-and-error for selecting... Prescriptions for radiation therapy are given in terms of dose-volume constraints (DVCs). Solving the fluence map optimization (FMO) problem while satisfying DVCs often requires a tedious trial-and-error for selecting appropriate dose control parameters on various organs. In this paper, we propose an iterative approach to satisfy DVCs using a multi-objective linear programming (LP) model for solving beamlet intensities. This algorithm, starting from arbitrary initial parameter values, gradually updates the values through an iterative solution process toward optimal solution. This method finds appropriate parameter values through the trade-off between OAR sparing and target coverage to improve the solution. We compared the plan quality and the satisfaction of the DVCs by the proposed algorithm with two nonlinear approaches: a nonlinear FMO model solved by using the L-BFGS algorithm and another approach solved by a commercial treatment planning system (Eclipse 8.9). We retrospectively selected from our institutional database five patients with lung cancer and one patient with prostate cancer for this study. Numerical results show that our approach successfully improved target coverage to meet the DVCs, while trying to keep corresponding OAR DVCs satisfied. The LBFGS algorithm for solving the nonlinear FMO model successfully satisfied the DVCs in three out of five test cases. However, there is no recourse in the nonlinear FMO model for correcting unsatisfied DVCs other than manually changing some parameter values through trial and error to derive a solution that more closely meets the DVC requirements. The LP-based heuristic algorithm outperformed the current treatment planning system in terms of DVC satisfaction. A major strength of the LP-based heuristic approach is that it is not sensitive to the starting condition. 展开更多
关键词 FLUENCE MAP Optimization (FMO) LINEAR PROGRAMMING (LP) Nonlinear PROGRAMMING (NLP) Dose-Volume Constraint (DVC) Intensity-Modulated Proton Therapy (IMPT)
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部