The global energy market is volatile at present.It is of great significance for the BRICS countries,representatives of emerging economies and energy powers in the world,to deepen practical cooperation in energy.With a...The global energy market is volatile at present.It is of great significance for the BRICS countries,representatives of emerging economies and energy powers in the world,to deepen practical cooperation in energy.With a large energy volume and obvious complementary advantages in energy resources,industries and technologies,the BRICS countries have a good basis and prospects for cooperation.With the continuous deepening of the BRICS cooperation mechanism,the mechanism for BRICS cooperation in energy has further improved and the path has become clear.In this paper,the history of BRICS energy cooperation mechanism,as well as the status quo and characteristics of BRICS energy cooperation are presented.From both internal and external dimensions,an in-depth analysis of the opportunities and challenges in energy cooperation among BRICS countries under the complex international situation is made,and strategic recommendations in four aspects are provided:to strengthen diversified cooperation and strategic alignment,to intensify information sharing and policy coordination,to improve financial security and settlement systems,and to promote the construction of“BRICS+”and cooperation mechanisms.展开更多
Single-atom catalysts(SACs)have received considerable attention in hydrogenation of nitroaromatic compounds to aromatic amines.In order to enhance the exposure of single atoms and overcome the mass transfer limitation...Single-atom catalysts(SACs)have received considerable attention in hydrogenation of nitroaromatic compounds to aromatic amines.In order to enhance the exposure of single atoms and overcome the mass transfer limitation,construction of hierarchical porous supports for single atoms is highly desirable.Herein,we report a straightforward method to synthesize Co single-atoms supported on a hollow-on-hollow structured carbon monolith(Co_(1)/HOHC-M)by pyrolysis ofα-cellulose monolith loaded with PS-core@ZnCo-zeolite imidazolate frameworks-shell nanospheres(PS@Zn-ZIFs/α-cellulose).The hollow-on-hollow structure consists of a large hollow void with a diameter of~290 nm(derived from the decomposition of polystyrene(PS)nanospheres)and a thin shell with hollow spherical pores with a diameter of~10 nm(derived from the evaporation of ZnO nanoparticles that are in-situ formed during pyrolysis in the presence of CO_(2)fromα-cellulose decomposition).Benefitting from the hierarchically porous architecture,the Co_(1)/HOHC-M exhibits excellent catalytic performance(reaction rate of 421.6 mmol·gCo^(-1)·h^(−1))in the transfer hydrogenation of nitrobenzene to aniline,outperforming the powdered sample of Co_(1)/HCS without the hollow spherical mesopores(reaction rate of 353.8 mmol·gCo^(-1)·h^(−1)).It is expected that this strategy could be well extended in heterogeneous catalysis,given the wide applications of porous carbon-supported single-atom catalysts.展开更多
Deliberate modulation of the electronic structure via interface engineering is one of promising perspectives to build advanced catalysts for urea oxidation reaction(UOR)at high current densities.However,it still remai...Deliberate modulation of the electronic structure via interface engineering is one of promising perspectives to build advanced catalysts for urea oxidation reaction(UOR)at high current densities.However,it still remains some challenges originating from the intrinsically sluggish UOR dynamics and the high energy barrier for urea adsorption.In response,we report the coupled NiSe_(2)nanowrinkles with Ni_(5)P_(4)nanorods heterogeneous structure onto Ni foam(denoted as NiSe_(2)@Ni_(5)P_(4)/NF)through successive phosphorization and selenization strategy,in which the produced closely contacted interface could provide high-flux electron transfer pathways.Theoretical findings decipher that the fast charge transfer takes place at the interfacial region from Ni_(5)P_(4)to NiSe_(2),which is conducive to optimizing adsorption energy of urea molecules.As expected,the well-designed NiSe_(2)@Ni_(5)P_(4)/NF only requires the low potential of 1.402 V at the current density of 500 mA·cm^(-2).More importantly,a small Tafel slope of 27.6 mV·dec^(-1),a high turnover frequency(TOF)value of 1.037 s^(-1)as well as the prolonged stability of 950 h at the current density of 100 mA·cm^(-2)are also achieved.This study enriches the understanding on the electronic structure modulation via interface engineering and offers bright prospect to design advanced UOR catalysts.展开更多
文摘The global energy market is volatile at present.It is of great significance for the BRICS countries,representatives of emerging economies and energy powers in the world,to deepen practical cooperation in energy.With a large energy volume and obvious complementary advantages in energy resources,industries and technologies,the BRICS countries have a good basis and prospects for cooperation.With the continuous deepening of the BRICS cooperation mechanism,the mechanism for BRICS cooperation in energy has further improved and the path has become clear.In this paper,the history of BRICS energy cooperation mechanism,as well as the status quo and characteristics of BRICS energy cooperation are presented.From both internal and external dimensions,an in-depth analysis of the opportunities and challenges in energy cooperation among BRICS countries under the complex international situation is made,and strategic recommendations in four aspects are provided:to strengthen diversified cooperation and strategic alignment,to intensify information sharing and policy coordination,to improve financial security and settlement systems,and to promote the construction of“BRICS+”and cooperation mechanisms.
基金supported by the National Natural Science Foundation of China(No.52100169)the Natural Science Foundation of Shandong Province(Nos.ZR2020QB196,ZR2022ZD30,and ZR2020QB053).
文摘Single-atom catalysts(SACs)have received considerable attention in hydrogenation of nitroaromatic compounds to aromatic amines.In order to enhance the exposure of single atoms and overcome the mass transfer limitation,construction of hierarchical porous supports for single atoms is highly desirable.Herein,we report a straightforward method to synthesize Co single-atoms supported on a hollow-on-hollow structured carbon monolith(Co_(1)/HOHC-M)by pyrolysis ofα-cellulose monolith loaded with PS-core@ZnCo-zeolite imidazolate frameworks-shell nanospheres(PS@Zn-ZIFs/α-cellulose).The hollow-on-hollow structure consists of a large hollow void with a diameter of~290 nm(derived from the decomposition of polystyrene(PS)nanospheres)and a thin shell with hollow spherical pores with a diameter of~10 nm(derived from the evaporation of ZnO nanoparticles that are in-situ formed during pyrolysis in the presence of CO_(2)fromα-cellulose decomposition).Benefitting from the hierarchically porous architecture,the Co_(1)/HOHC-M exhibits excellent catalytic performance(reaction rate of 421.6 mmol·gCo^(-1)·h^(−1))in the transfer hydrogenation of nitrobenzene to aniline,outperforming the powdered sample of Co_(1)/HCS without the hollow spherical mesopores(reaction rate of 353.8 mmol·gCo^(-1)·h^(−1)).It is expected that this strategy could be well extended in heterogeneous catalysis,given the wide applications of porous carbon-supported single-atom catalysts.
基金The authors extend their appreciation to the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University(IMSIU)for funding and supporting this work through Research Partnership Program(No.RP-21-09-75).
文摘Deliberate modulation of the electronic structure via interface engineering is one of promising perspectives to build advanced catalysts for urea oxidation reaction(UOR)at high current densities.However,it still remains some challenges originating from the intrinsically sluggish UOR dynamics and the high energy barrier for urea adsorption.In response,we report the coupled NiSe_(2)nanowrinkles with Ni_(5)P_(4)nanorods heterogeneous structure onto Ni foam(denoted as NiSe_(2)@Ni_(5)P_(4)/NF)through successive phosphorization and selenization strategy,in which the produced closely contacted interface could provide high-flux electron transfer pathways.Theoretical findings decipher that the fast charge transfer takes place at the interfacial region from Ni_(5)P_(4)to NiSe_(2),which is conducive to optimizing adsorption energy of urea molecules.As expected,the well-designed NiSe_(2)@Ni_(5)P_(4)/NF only requires the low potential of 1.402 V at the current density of 500 mA·cm^(-2).More importantly,a small Tafel slope of 27.6 mV·dec^(-1),a high turnover frequency(TOF)value of 1.037 s^(-1)as well as the prolonged stability of 950 h at the current density of 100 mA·cm^(-2)are also achieved.This study enriches the understanding on the electronic structure modulation via interface engineering and offers bright prospect to design advanced UOR catalysts.