BACKGROUND Limited knowledge exists regarding the casual associations linking blood metabolites and the risk of developing colorectal cancer.AIM To investigate causal associations between blood metabolites and colon c...BACKGROUND Limited knowledge exists regarding the casual associations linking blood metabolites and the risk of developing colorectal cancer.AIM To investigate causal associations between blood metabolites and colon cancer.METHODS The study utilized a two-sample Mendelian randomization(MR)analysis to investigate the causal impact of 486 blood metabolites on colorectal cancer.The primary method of analysis used was the inverse variance weighted model.To further validate the results several sensitivity analyses were performed,including Cochran's Q test,MR-Egger intercept test,and MR robust adjusted profile score.These additional analyses were conducted to ensure the reliability and robustness of the findings.RESULTS After rigorous selection for genetic variation,486 blood metabolites were included in the MR analysis.We found Mannose[odds ratio(OR)=2.09(1.10-3.97),P=0.024],N-acetylglycine[OR=3.14(1.78-5.53),P=7.54×10^(-8)],X-11593-O-methylascorbate[OR=1.68(1.04-2.72),P=0.034],1-arachidonoylglycerophosphocholine[OR=4.23(2.51-7.12),P=6.35×10^(-8)]and 1-arachidonoylglycerophosphoethanolamine 4[OR=3.99(1.17-13.54),P=0.027]were positively causally associated with colorectal cancer,and we also found a negative causal relationship between Tyrosine[OR=0.08(0.01-0.63),P=0.014],Urate[OR=0.25(0.10-0.62),P=0.003],N-acetylglycine[0.73(0.54-0.98),P=0.033],X-12092[OR=0.89(0.81-0.99),P=0.028],Succinylcarnitine[OR=0.48(0.27-0.84),P=0.09]with colorectal cancer.A series of sensitivity analyses were performed to confirm the rigidity of the results.CONCLUSION This study showed a causal relationship between 10 blood metabolites and colorectal cancer,of which 5 blood metabolites were found to be causal for the development of colorectal cancer and were confirmed as risk factors.The other five blood metabolites are protective factors.展开更多
To predict the microstructure evolution and reveal the forming mechanism of Ni-based superalloy cylindrical parts during hot power spinning, a finite element method (FEM) model of deformation-heat transfermicrostructu...To predict the microstructure evolution and reveal the forming mechanism of Ni-based superalloy cylindrical parts during hot power spinning, a finite element method (FEM) model of deformation-heat transfermicrostructure evolution was established using MSC.Marc software. A numerical simulation was then conducted based on the secondary development of user subroutines, to investigate evolution of the microstructure of a Haynes 230 alloy cylindrical part during hot power spinning. The volume fraction of dynamic recrystallization (DRX) and the grain size of Haynes 230 alloy cylindrical parts during hot power spinning were analyzed. The results showed that the DRX of the spun workpiece was more obvious with an increase in the forming temperature, T, and the total thinning ratio of wall thickness,ψt.Furthermore, the complete DRX microstructure with fine and uniform grains was obtained when T≥1 100 °C and ψt≥ 2 56%, but the grain size of the spun workpiece decreased slightly with an increase in the roller feed rate, f. The experimental results conformed well with simulation results.展开更多
基金Supported by the General Project of Medical and Health Technology Plan of Zhejiang Province,No.2020KY845.
文摘BACKGROUND Limited knowledge exists regarding the casual associations linking blood metabolites and the risk of developing colorectal cancer.AIM To investigate causal associations between blood metabolites and colon cancer.METHODS The study utilized a two-sample Mendelian randomization(MR)analysis to investigate the causal impact of 486 blood metabolites on colorectal cancer.The primary method of analysis used was the inverse variance weighted model.To further validate the results several sensitivity analyses were performed,including Cochran's Q test,MR-Egger intercept test,and MR robust adjusted profile score.These additional analyses were conducted to ensure the reliability and robustness of the findings.RESULTS After rigorous selection for genetic variation,486 blood metabolites were included in the MR analysis.We found Mannose[odds ratio(OR)=2.09(1.10-3.97),P=0.024],N-acetylglycine[OR=3.14(1.78-5.53),P=7.54×10^(-8)],X-11593-O-methylascorbate[OR=1.68(1.04-2.72),P=0.034],1-arachidonoylglycerophosphocholine[OR=4.23(2.51-7.12),P=6.35×10^(-8)]and 1-arachidonoylglycerophosphoethanolamine 4[OR=3.99(1.17-13.54),P=0.027]were positively causally associated with colorectal cancer,and we also found a negative causal relationship between Tyrosine[OR=0.08(0.01-0.63),P=0.014],Urate[OR=0.25(0.10-0.62),P=0.003],N-acetylglycine[0.73(0.54-0.98),P=0.033],X-12092[OR=0.89(0.81-0.99),P=0.028],Succinylcarnitine[OR=0.48(0.27-0.84),P=0.09]with colorectal cancer.A series of sensitivity analyses were performed to confirm the rigidity of the results.CONCLUSION This study showed a causal relationship between 10 blood metabolites and colorectal cancer,of which 5 blood metabolites were found to be causal for the development of colorectal cancer and were confirmed as risk factors.The other five blood metabolites are protective factors.
基金the National Natural Science Foundation of China (Grant Nos. 51375172, 51775194)Specialized Research Fund for the Doctoral Program of Higher Education (SRFDP)(Grant No. 20130172110024)+1 种基金Guangdong Provincial Key Laboratory of Precision Equipment and Manufacturing Technology (PEMT1202)the EU Marie Curie Actions - MatProFuture Project (FP7-PEOPLE-2012-IRSES-318968).
文摘To predict the microstructure evolution and reveal the forming mechanism of Ni-based superalloy cylindrical parts during hot power spinning, a finite element method (FEM) model of deformation-heat transfermicrostructure evolution was established using MSC.Marc software. A numerical simulation was then conducted based on the secondary development of user subroutines, to investigate evolution of the microstructure of a Haynes 230 alloy cylindrical part during hot power spinning. The volume fraction of dynamic recrystallization (DRX) and the grain size of Haynes 230 alloy cylindrical parts during hot power spinning were analyzed. The results showed that the DRX of the spun workpiece was more obvious with an increase in the forming temperature, T, and the total thinning ratio of wall thickness,ψt.Furthermore, the complete DRX microstructure with fine and uniform grains was obtained when T≥1 100 °C and ψt≥ 2 56%, but the grain size of the spun workpiece decreased slightly with an increase in the roller feed rate, f. The experimental results conformed well with simulation results.