Global inland surface water bodies such as lakes and reservoirs,important components of the hydrosphere and ecosphere,are increasingly affected by climate change.Generating bathymetric volume-areaheight (BVAH) curves ...Global inland surface water bodies such as lakes and reservoirs,important components of the hydrosphere and ecosphere,are increasingly affected by climate change.Generating bathymetric volume-areaheight (BVAH) curves for global inland surface water bodies can enhance our understanding of their topography and climate impacts.However,accurately quantifying the topographic patterns of these water bodies remains challenging due to the difficulties in collecting comprehensive bathymetric data.Therefore,we collected and processed over 2000 bathymetric maps of global water bodies from over 50 different data sources and then developed the BVAH model.Finally,the BVAH hydrological curves of 16671 global inland surface water bodies (larger than 10 km~2) were generated.The results include but are not limited to (1) For most targeted water bodies,area (A) and volume (V) exhibit significant power function relationships with surface heights (H),with optimal power values quantified as 1.42 for A and 2.42 for V.(2) The BVAH model outperforms GLOBathy in estimating area and volume changes,achieving higher correlation coefficients (CC) of approximately 0.962 for the area and 0.991 for volume,and demonstrating lower percentages of root mean squared errors (PRMSE) around 10.9% for the area and 4.8% for volume.(3) In the case study of the Xizang Plateau and various large global reservoirs,the BVAH curve database can capture dynamic volume changes.As a unified simulation of the bathymetric topographical patterns,our bathymetric dataset and corresponding BVAH curve database have great potential to contribute to effective water resource management and ecological conservation efforts worldwide.展开更多
The relevant mechanism of tumor-associated macrophages(TAMs)in the treatment of colorectal cancer patients with immune checkpoint inhibitors(ICIs)is discussed,and the application prospects of TAMs in reversing the tre...The relevant mechanism of tumor-associated macrophages(TAMs)in the treatment of colorectal cancer patients with immune checkpoint inhibitors(ICIs)is discussed,and the application prospects of TAMs in reversing the treatment tolerance of ICIs are discussed to provide a reference for related studies.As a class of drugs widely used in clinical tumor immunotherapy,ICIs can act on regulatory molecules on cells that play an inhibitory role-immune checkpoints-and kill tumors in the form of an immune response by activating a variety of immune cells in the immune system.The sensitivity of patients with different types of colorectal cancer to ICI treatment varies greatly.The phenotype and function of TAMs in the colorectal cancer microenvironment are closely related to the efficacy of ICIs.ICIs can regulate the phenotypic function of TAMs,and TAMs can also affect the tolerance of colorectal cancer to ICI therapy.TAMs play an important role in ICI resistance,and making full use of this target as a therapeutic strategy is expected to improve the immunotherapy efficacy and prognosis of patients with colorectal cancer.展开更多
Transmission electron microscopy(TEM),scanning electron microscopy(SEM),hardness tests and tensile tests were performed to investigate the effect of aging on microstructure and mechanical properties of forged Al-4.4Cu...Transmission electron microscopy(TEM),scanning electron microscopy(SEM),hardness tests and tensile tests were performed to investigate the effect of aging on microstructure and mechanical properties of forged Al-4.4Cu-0.7Mg-0.6Si alloy.The results show that the alloy exhibits splendid mechanical properties with an ultimate tensile strength of504MPa and an elongation of10.1%after aging at170°C for16h.With tensile testing temperature increasing to150°C,the strength of the alloy declines slightly to483MPa.Then,the strength drops quickly when temperature reaches over200°C.The high strength of the alloy in peak-aged condition is caused by a considerable amount ofθ'and AlMgSiCu(Q)precipitates.The relatively stable mechanical properties tested below150°C are mainly ascribed to the stability ofθ'precipitates.The growth ofθ'and Q precipitates and the generation ofθphase lead to a rapid drop of the strength when temperature is over150°C.展开更多
We demonstrate that,in a simple linearly-polarized plane wave,the optical pulling forces on nanoparticle clusters with gain can be induced by the Fano-like resonance.The numerical results based on the full-wave calcul...We demonstrate that,in a simple linearly-polarized plane wave,the optical pulling forces on nanoparticle clusters with gain can be induced by the Fano-like resonance.The numerical results based on the full-wave calculation show that the optical pulling forces can be attributed to the recoil forces for the nanoparticle clusters composed of dipolar nanoparticles with three different configurations.Interestingly,the recoil forces giving rise to optical pulling forces are exactly dominated by the coupling term between the electric and magnetic dipoles excited in the nanoparticle clusters,while other higherorder terms have a negligible contribution.In addition,the optical pulling force can be tailored by modulating the Fano-like resonance via either the particle size or the gain magnitude,offering an alternative freedom degree for optical manipulations of particle clusters.展开更多
Hydrogen sulfide(H_(2)S)is the most recently discovered gasotransmitter molecule that activates multiple intracellular signaling pathways and exerts concentration-dependent antitumor effect by interfering with mitocho...Hydrogen sulfide(H_(2)S)is the most recently discovered gasotransmitter molecule that activates multiple intracellular signaling pathways and exerts concentration-dependent antitumor effect by interfering with mitochondrial respiration and inhibiting cellular ATP generation.Inspired by the fact that H_(2)S can also serve as a promoter for intracellular Ca^(2+)influx,tumor-specific nanomodulators(I-CaS@PP)have been constructed by encapsulating calcium sulfide(CaS)and indocyanine green(ICG)into methoxy poly(ethylene glycol)-b-poly(lactide-co-glycolide)(PLGA-PEG).I-CaS@PP can achieve tumor-specific biodegradability with high biocompatibility and pH-responsive H_(2)S release.The released H_(2)S can effectively suppress the catalase(CAT)activity and synergize with released Ca^(2+)to facilitate abnormal Ca^(2+)retention in cells,thus leading to mitochondria destruction and amplification of oxidative stress.Mitochondrial dysfunction further contributes to blocking ATP synthesis and downregulating heat shock proteins(HSPs)expression,which is beneficial to overcome the heat endurance of tumor cells and strengthen ICG-induced photothermal performance.Such a H_(2)S-boosted Ca^(2+)-involved tumor-specific therapy exhibits highly effective tumor inhibition effect with almost complete elimination within 14-day treatment,indicating the great prospect of CaS-based nanomodulators as antitumor therapeutics.展开更多
A cooling system consisting of several heat exchange modules is a necessary part of an automobile, and its performance has a direct effect on a vehicle's energy consumption. Heat exchangers, such as a charged air ...A cooling system consisting of several heat exchange modules is a necessary part of an automobile, and its performance has a direct effect on a vehicle's energy consumption. Heat exchangers, such as a charged air cooler (CAC), radiator, oil cooler, or condenser have different structures and can be arranged in various orders, and each combination may produce different effects because of interactions among them. In this study, we aimed to explore the principles governing interactions among adjacent heat exchangers in a cooling system, using numerical simulation and experimental technology. 3D models with different combinations were developed, compared, and analyzed comprehensively. A wind tunnel test platform was constructed to validate the computational results. We found that the heat dissipation of the modules was affected slightly by their relative position (the rules basically comply with the field synergy principle), but was independent of the modules' spacing within a certain distance range. The heat dissipation of one module could be effectively improved by restructuring, but with a penalty of higher resistance. However, the negative effect on the downstream module was much less than expected. The results indicated that the intensity of heat transfer depends not only on the average temperature difference between cold and hot mediums, but also on the temperature distribution.展开更多
基金supported by the National Natural Science Foundation of China (No. 41971377 & No. 41901346)the Fundamental Research Funds for the Central Universities, Peking University。
文摘Global inland surface water bodies such as lakes and reservoirs,important components of the hydrosphere and ecosphere,are increasingly affected by climate change.Generating bathymetric volume-areaheight (BVAH) curves for global inland surface water bodies can enhance our understanding of their topography and climate impacts.However,accurately quantifying the topographic patterns of these water bodies remains challenging due to the difficulties in collecting comprehensive bathymetric data.Therefore,we collected and processed over 2000 bathymetric maps of global water bodies from over 50 different data sources and then developed the BVAH model.Finally,the BVAH hydrological curves of 16671 global inland surface water bodies (larger than 10 km~2) were generated.The results include but are not limited to (1) For most targeted water bodies,area (A) and volume (V) exhibit significant power function relationships with surface heights (H),with optimal power values quantified as 1.42 for A and 2.42 for V.(2) The BVAH model outperforms GLOBathy in estimating area and volume changes,achieving higher correlation coefficients (CC) of approximately 0.962 for the area and 0.991 for volume,and demonstrating lower percentages of root mean squared errors (PRMSE) around 10.9% for the area and 4.8% for volume.(3) In the case study of the Xizang Plateau and various large global reservoirs,the BVAH curve database can capture dynamic volume changes.As a unified simulation of the bathymetric topographical patterns,our bathymetric dataset and corresponding BVAH curve database have great potential to contribute to effective water resource management and ecological conservation efforts worldwide.
文摘The relevant mechanism of tumor-associated macrophages(TAMs)in the treatment of colorectal cancer patients with immune checkpoint inhibitors(ICIs)is discussed,and the application prospects of TAMs in reversing the treatment tolerance of ICIs are discussed to provide a reference for related studies.As a class of drugs widely used in clinical tumor immunotherapy,ICIs can act on regulatory molecules on cells that play an inhibitory role-immune checkpoints-and kill tumors in the form of an immune response by activating a variety of immune cells in the immune system.The sensitivity of patients with different types of colorectal cancer to ICI treatment varies greatly.The phenotype and function of TAMs in the colorectal cancer microenvironment are closely related to the efficacy of ICIs.ICIs can regulate the phenotypic function of TAMs,and TAMs can also affect the tolerance of colorectal cancer to ICI therapy.TAMs play an important role in ICI resistance,and making full use of this target as a therapeutic strategy is expected to improve the immunotherapy efficacy and prognosis of patients with colorectal cancer.
基金Project(51301209)supported by the National Natural Science Foundation of China
文摘Transmission electron microscopy(TEM),scanning electron microscopy(SEM),hardness tests and tensile tests were performed to investigate the effect of aging on microstructure and mechanical properties of forged Al-4.4Cu-0.7Mg-0.6Si alloy.The results show that the alloy exhibits splendid mechanical properties with an ultimate tensile strength of504MPa and an elongation of10.1%after aging at170°C for16h.With tensile testing temperature increasing to150°C,the strength of the alloy declines slightly to483MPa.Then,the strength drops quickly when temperature reaches over200°C.The high strength of the alloy in peak-aged condition is caused by a considerable amount ofθ'and AlMgSiCu(Q)precipitates.The relatively stable mechanical properties tested below150°C are mainly ascribed to the stability ofθ'precipitates.The growth ofθ'and Q precipitates and the generation ofθphase lead to a rapid drop of the strength when temperature is over150°C.
基金Project supported by the Natural Science Foundation of Guangxi Province of China (Grant No.2021GXNSFDA196001)the National Natural Science Foundation of China (Grant Nos.12174076,12074084,and 12204117)+1 种基金Guangxi Science and Technology Project (Grant Nos.AD22080042 and AB21220052)Open Project of State Key Laboratory of Surface Physics in Hehai University (Grant No.KF2022_15)。
文摘We demonstrate that,in a simple linearly-polarized plane wave,the optical pulling forces on nanoparticle clusters with gain can be induced by the Fano-like resonance.The numerical results based on the full-wave calculation show that the optical pulling forces can be attributed to the recoil forces for the nanoparticle clusters composed of dipolar nanoparticles with three different configurations.Interestingly,the recoil forces giving rise to optical pulling forces are exactly dominated by the coupling term between the electric and magnetic dipoles excited in the nanoparticle clusters,while other higherorder terms have a negligible contribution.In addition,the optical pulling force can be tailored by modulating the Fano-like resonance via either the particle size or the gain magnitude,offering an alternative freedom degree for optical manipulations of particle clusters.
基金The authors gratefully acknowledge the support of this research by the National Natural Science Foundation of China(31922042,81971737,32171313)Guangdong Basic and Applied Basic Research Foundation(2020B1515020017,China)+4 种基金Shenzhen Science and Technology Program(RCYX20210706092104033,China)Science and Technology Innovation Committee of Shenzhen Municipality(JCYJ20190807152601651,China)Guangdong Special Support Program(2019TQ05Y224,China)the Fundamental Research Funds for the Central Universities(2021-RC310-005,2020-RC320-002 and 2019PT320028,China)Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences(2021-I2M-1-058,China).
文摘Hydrogen sulfide(H_(2)S)is the most recently discovered gasotransmitter molecule that activates multiple intracellular signaling pathways and exerts concentration-dependent antitumor effect by interfering with mitochondrial respiration and inhibiting cellular ATP generation.Inspired by the fact that H_(2)S can also serve as a promoter for intracellular Ca^(2+)influx,tumor-specific nanomodulators(I-CaS@PP)have been constructed by encapsulating calcium sulfide(CaS)and indocyanine green(ICG)into methoxy poly(ethylene glycol)-b-poly(lactide-co-glycolide)(PLGA-PEG).I-CaS@PP can achieve tumor-specific biodegradability with high biocompatibility and pH-responsive H_(2)S release.The released H_(2)S can effectively suppress the catalase(CAT)activity and synergize with released Ca^(2+)to facilitate abnormal Ca^(2+)retention in cells,thus leading to mitochondria destruction and amplification of oxidative stress.Mitochondrial dysfunction further contributes to blocking ATP synthesis and downregulating heat shock proteins(HSPs)expression,which is beneficial to overcome the heat endurance of tumor cells and strengthen ICG-induced photothermal performance.Such a H_(2)S-boosted Ca^(2+)-involved tumor-specific therapy exhibits highly effective tumor inhibition effect with almost complete elimination within 14-day treatment,indicating the great prospect of CaS-based nanomodulators as antitumor therapeutics.
基金Project (No. 51206141) supported by the National Natural Science Foundation of China
文摘A cooling system consisting of several heat exchange modules is a necessary part of an automobile, and its performance has a direct effect on a vehicle's energy consumption. Heat exchangers, such as a charged air cooler (CAC), radiator, oil cooler, or condenser have different structures and can be arranged in various orders, and each combination may produce different effects because of interactions among them. In this study, we aimed to explore the principles governing interactions among adjacent heat exchangers in a cooling system, using numerical simulation and experimental technology. 3D models with different combinations were developed, compared, and analyzed comprehensively. A wind tunnel test platform was constructed to validate the computational results. We found that the heat dissipation of the modules was affected slightly by their relative position (the rules basically comply with the field synergy principle), but was independent of the modules' spacing within a certain distance range. The heat dissipation of one module could be effectively improved by restructuring, but with a penalty of higher resistance. However, the negative effect on the downstream module was much less than expected. The results indicated that the intensity of heat transfer depends not only on the average temperature difference between cold and hot mediums, but also on the temperature distribution.