The metal-carbon dioxide batteries,emerging as high-energy-density energy storage devices,enable direct CO_(2)utilization,offering promising prospects for CO_(2)capture and utilization,energy conversion,and storage.Ho...The metal-carbon dioxide batteries,emerging as high-energy-density energy storage devices,enable direct CO_(2)utilization,offering promising prospects for CO_(2)capture and utilization,energy conversion,and storage.However,the electrochemical performance of M-CO_(2)batteries faces significant challenges,particularly at extreme temperatures.Issues such as high overpotential,poor charge reversibility,and cycling capacity decay arise from complex reaction interfaces,sluggish oxidation kinetics,inefficient catalysts,dendrite growth,and unstable electrolytes.Despite significant advancements at room temperature,limited research has focused on the performance of M-CO_(2)batteries across a wide-temperature range.This review examines the effects of low and high temperatures on M-CO_(2)battery components and their reaction mechanism,as well as the advancements made in extending operational ranges from room temperature to extremely low and high temperatures.It discusses strategies to enhance electrochemical performance at extreme temperatures and outlines opportunities,challenges,and future directions for the development of M-CO_(2)batteries.展开更多
Over the past few decades,one of the most significant advances in dam construction has been the inven-tion of the rock-filled concrete(RFC)dam,which is constructed by pouring high-performance self-compacting concrete(...Over the past few decades,one of the most significant advances in dam construction has been the inven-tion of the rock-filled concrete(RFC)dam,which is constructed by pouring high-performance self-compacting concrete(HSCC)to fill the voids in preplaced large rocks.The innovative use of large rocks in dam construction provides engineers with a material that requires less cement consumption and hydration heat while enhancing construction efficiency and environmental friendliness.However,two fundamental scientific issues related to RFC need to be addressed:namely,the pouring compactness and the effect of large rocks on the mechanical and physical properties of RFC.This article provides a timely review of fundamental research and innovations in the design,construction,and quality control of RFCdams.Prospects for next-generation concrete dams are discussed from the perspectives of envi-ronmental friendliness,intrinsic safety,and labor savings.展开更多
Esophageal squamous cell carcinoma(ESCC)is a malignant epithelial tumor,characterized by squamous cell differentiation,it is the sixth leading cause of cancer-related deaths globally.The increased mortality rate of ES...Esophageal squamous cell carcinoma(ESCC)is a malignant epithelial tumor,characterized by squamous cell differentiation,it is the sixth leading cause of cancer-related deaths globally.The increased mortality rate of ESCC patients is predominantly due to the advanced stage of the disease when discovered,coupled with higher risk of metastasis,which is an exceedingly malignant charac-teristic of cancer,frequently leading to a high mortality rate.Unfortunately,there is currently no specific and effective marker to predict and treat metastasis in ESCC.MicroRNAs(miRNAs)are a class of small non-coding RNA molecules,approximately 22 nucleotides in length.miRNAs are vital in modulating gene expression and serve pivotal regulatory roles in the occurrence,progression,and prognosis of cancer.Here,we have examined the literature to highlight the intimate correlations between miRNAs and ESCC metastasis,and show that ESCC metastasis is predominantly regulated or regulated by genetic and epigenetic factors.This review proposes a potential role for miRNAs as diagnostic and therapeutic biomarkers for metastasis in ESCC metastasis,with the ultimate aim of reducing the mortality rate among patients with ESCC.展开更多
基金support from the National Natural Science Foundation of China(No.52201278,No.21975260,No.22379103,No.22409074).
文摘The metal-carbon dioxide batteries,emerging as high-energy-density energy storage devices,enable direct CO_(2)utilization,offering promising prospects for CO_(2)capture and utilization,energy conversion,and storage.However,the electrochemical performance of M-CO_(2)batteries faces significant challenges,particularly at extreme temperatures.Issues such as high overpotential,poor charge reversibility,and cycling capacity decay arise from complex reaction interfaces,sluggish oxidation kinetics,inefficient catalysts,dendrite growth,and unstable electrolytes.Despite significant advancements at room temperature,limited research has focused on the performance of M-CO_(2)batteries across a wide-temperature range.This review examines the effects of low and high temperatures on M-CO_(2)battery components and their reaction mechanism,as well as the advancements made in extending operational ranges from room temperature to extremely low and high temperatures.It discusses strategies to enhance electrochemical performance at extreme temperatures and outlines opportunities,challenges,and future directions for the development of M-CO_(2)batteries.
基金the support from the Key Program Grant from National Natural Science Foundation of China (52039005)Grant from State Key Laboratory of Hydroscience and Engineering (2022-KY-01).
文摘Over the past few decades,one of the most significant advances in dam construction has been the inven-tion of the rock-filled concrete(RFC)dam,which is constructed by pouring high-performance self-compacting concrete(HSCC)to fill the voids in preplaced large rocks.The innovative use of large rocks in dam construction provides engineers with a material that requires less cement consumption and hydration heat while enhancing construction efficiency and environmental friendliness.However,two fundamental scientific issues related to RFC need to be addressed:namely,the pouring compactness and the effect of large rocks on the mechanical and physical properties of RFC.This article provides a timely review of fundamental research and innovations in the design,construction,and quality control of RFCdams.Prospects for next-generation concrete dams are discussed from the perspectives of envi-ronmental friendliness,intrinsic safety,and labor savings.
基金Supported by Foundation of Henan Educational Committee,No.22A310024and Natural Science Foundation for Young Teachers'Basic Research of Zhengzhou University,No.JC202035025。
文摘Esophageal squamous cell carcinoma(ESCC)is a malignant epithelial tumor,characterized by squamous cell differentiation,it is the sixth leading cause of cancer-related deaths globally.The increased mortality rate of ESCC patients is predominantly due to the advanced stage of the disease when discovered,coupled with higher risk of metastasis,which is an exceedingly malignant charac-teristic of cancer,frequently leading to a high mortality rate.Unfortunately,there is currently no specific and effective marker to predict and treat metastasis in ESCC.MicroRNAs(miRNAs)are a class of small non-coding RNA molecules,approximately 22 nucleotides in length.miRNAs are vital in modulating gene expression and serve pivotal regulatory roles in the occurrence,progression,and prognosis of cancer.Here,we have examined the literature to highlight the intimate correlations between miRNAs and ESCC metastasis,and show that ESCC metastasis is predominantly regulated or regulated by genetic and epigenetic factors.This review proposes a potential role for miRNAs as diagnostic and therapeutic biomarkers for metastasis in ESCC metastasis,with the ultimate aim of reducing the mortality rate among patients with ESCC.