In the contemporary era,the death rate is increasing due to lung cancer.However,technology is continuously enhancing the quality of well-being.To improve the survival rate,radiologists rely on Computed Tomography(CT)s...In the contemporary era,the death rate is increasing due to lung cancer.However,technology is continuously enhancing the quality of well-being.To improve the survival rate,radiologists rely on Computed Tomography(CT)scans for early detection and diagnosis of lung nodules.This paper presented a detailed,systematic review of several identification and categorization techniques for lung nodules.The analysis of the report explored the challenges,advancements,and future opinions in computer-aided diagnosis CAD systems for detecting and classifying lung nodules employing the deep learning(DL)algorithm.The findings also highlighted the usefulness of DL networks,especially convolutional neural networks(CNNs)in elevating sensitivity,accuracy,and specificity as well as overcoming false positives in the initial stages of lung cancer detection.This paper further presented the integral nodule classification stage,which stressed the importance of differentiating between benign and malignant nodules for initial cancer diagnosis.Moreover,the findings presented a comprehensive analysis of multiple techniques and studies for nodule classification,highlighting the evolution of methodologies from conventional machine learning(ML)classifiers to transfer learning and integrated CNNs.Interestingly,while accepting the strides formed by CAD systems,the review addressed persistent challenges.展开更多
The feedback collection and analysis has remained an important subject matter for long.The traditional techniques for student feedback analysis are based on questionnaire-based data collection and analysis.However,the...The feedback collection and analysis has remained an important subject matter for long.The traditional techniques for student feedback analysis are based on questionnaire-based data collection and analysis.However,the student expresses their feedback opinions on online social media sites,which need to be analyzed.This study aims at the development of fuzzy-based sentiment analysis system for analyzing student feedback and satisfaction by assigning proper sentiment score to opinion words and polarity shifters present in the input reviews.Our technique computes the sentiment score of student feedback reviews and then applies a fuzzy-logic module to analyze and quantify student’s satisfaction at the fine-grained level.The experimental results reveal that the proposed work has outperformed the baseline studies as well as state-of-the-art machine learning classifiers.展开更多
Emotion detection from the text is a challenging problem in the text analytics.The opinion mining experts are focusing on the development of emotion detection applications as they have received considerable attention ...Emotion detection from the text is a challenging problem in the text analytics.The opinion mining experts are focusing on the development of emotion detection applications as they have received considerable attention of online community including users and business organization for collecting and interpreting public emotions.However,most of the existing works on emotion detection used less efficient machine learning classifiers with limited datasets,resulting in performance degradation.To overcome this issue,this work aims at the evaluation of the performance of different machine learning classifiers on a benchmark emotion dataset.The experimental results show the performance of different machine learning classifiers in terms of different evaluation metrics like precision,recall ad f-measure.Finally,a classifier with the best performance is recommended for the emotion classification.展开更多
With the advent and advancements in the wireless technologies,Wi-Fi ngerprinting-based Indoor Positioning System(IPS)has become one of the most promising solutions for localization in indoor environments.Unlike the ou...With the advent and advancements in the wireless technologies,Wi-Fi ngerprinting-based Indoor Positioning System(IPS)has become one of the most promising solutions for localization in indoor environments.Unlike the outdoor environment,the lack of line-of-sight propagation in an indoor environment keeps the interest of the researchers to develop efcient and precise positioning systems that can later be incorporated in numerous applications involving Internet of Things(IoTs)and green computing.In this paper,we have proposed a technique that combines the capabilities of multiple algorithms to overcome the complexities experienced indoors.Initially,in the database development phase,Motley Kennan propagation model is used with Hough transformation to classify,detect,and assign different attenuation factors related to the types of walls.Furthermore,important parameters for system accuracy,such as,placement and geometry of Access Points(APs)in the coverage area are also considered.New algorithm for deployment of an additional AP to an already existing infrastructure is proposed by using Genetic Algorithm(GA)coupled with Enhanced Dilution of Precision(EDOP).Moreover,classication algorithm based on k-Nearest Neighbors(k-NN)is used to nd the position of a stationary or mobile user inside the given coverage area.For k-NN to provide low localization error and reduced space dimensionality,three APs are required to be selected optimally.In this paper,we have suggested an idea to select APs based on Position Vectors(PV)as an input to the localization algorithm.Deducing from our comprehensive investigations,it is revealed that the accuracy of indoor positioning system using the proposed technique unblemished the existing solutions with signicant improvements.展开更多
Due to the inability of the Global Positioning System(GPS)signals to penetrate through surfaces like roofs,walls,and other objects in indoor environments,numerous alternative methods for user positioning have been pre...Due to the inability of the Global Positioning System(GPS)signals to penetrate through surfaces like roofs,walls,and other objects in indoor environments,numerous alternative methods for user positioning have been presented.Amongst those,the Wi-Fi fingerprinting method has gained considerable interest in Indoor Positioning Systems(IPS)as the need for lineof-sight measurements is minimal,and it achieves better efficiency in even complex indoor environments.Offline and online are the two phases of the fingerprinting method.Many researchers have highlighted the problems in the offline phase as it deals with huge datasets and validation of Fingerprints without pre-processing of data becomes a concern.Machine learning is used for the model training in the offline phase while the locations are estimated in the online phase.Many researchers have considered the concerns in the offline phase as it deals with huge datasets and validation of Fingerprints becomes an issue.Machine learning algorithms are a natural solution for winnowing through large datasets and determining the significant fragments of information for localization,creating precise models to predict an indoor location.Large training sets are a key for obtaining better results in machine learning problems.Therefore,an existing WLAN fingerprinting-based multistory building location database has been used with 21049 samples including 19938 training and 1111 testing samples.The proposed model consists of mean and median filtering as pre-processing techniques applied to the database for enhancing the accuracy by mitigating the impact of environmental dispersion and investigated machine learning algorithms(kNN,WkNN,FSkNN,and SVM)for estimating the location.The proposed SVM with median filtering algorithm gives a reduced mean positioning error of 0.7959 m and an improved efficiency of 92.84%as compared to all variants of the proposed method for 108703 m^(2) area.展开更多
文摘In the contemporary era,the death rate is increasing due to lung cancer.However,technology is continuously enhancing the quality of well-being.To improve the survival rate,radiologists rely on Computed Tomography(CT)scans for early detection and diagnosis of lung nodules.This paper presented a detailed,systematic review of several identification and categorization techniques for lung nodules.The analysis of the report explored the challenges,advancements,and future opinions in computer-aided diagnosis CAD systems for detecting and classifying lung nodules employing the deep learning(DL)algorithm.The findings also highlighted the usefulness of DL networks,especially convolutional neural networks(CNNs)in elevating sensitivity,accuracy,and specificity as well as overcoming false positives in the initial stages of lung cancer detection.This paper further presented the integral nodule classification stage,which stressed the importance of differentiating between benign and malignant nodules for initial cancer diagnosis.Moreover,the findings presented a comprehensive analysis of multiple techniques and studies for nodule classification,highlighting the evolution of methodologies from conventional machine learning(ML)classifiers to transfer learning and integrated CNNs.Interestingly,while accepting the strides formed by CAD systems,the review addressed persistent challenges.
文摘The feedback collection and analysis has remained an important subject matter for long.The traditional techniques for student feedback analysis are based on questionnaire-based data collection and analysis.However,the student expresses their feedback opinions on online social media sites,which need to be analyzed.This study aims at the development of fuzzy-based sentiment analysis system for analyzing student feedback and satisfaction by assigning proper sentiment score to opinion words and polarity shifters present in the input reviews.Our technique computes the sentiment score of student feedback reviews and then applies a fuzzy-logic module to analyze and quantify student’s satisfaction at the fine-grained level.The experimental results reveal that the proposed work has outperformed the baseline studies as well as state-of-the-art machine learning classifiers.
基金This work has partially been sponsored by the Hungarian National Scientific Fund under contract OTKA 129374the Research&Development Operational Program for the project“Modernization and Improvement of Technical Infrastructure for Research and Development of J.Selye University in the Fields of Nanotechnology and Intelligent Space”,ITMS 26210120042,co-funded by the European Regional Development Fund.
文摘Emotion detection from the text is a challenging problem in the text analytics.The opinion mining experts are focusing on the development of emotion detection applications as they have received considerable attention of online community including users and business organization for collecting and interpreting public emotions.However,most of the existing works on emotion detection used less efficient machine learning classifiers with limited datasets,resulting in performance degradation.To overcome this issue,this work aims at the evaluation of the performance of different machine learning classifiers on a benchmark emotion dataset.The experimental results show the performance of different machine learning classifiers in terms of different evaluation metrics like precision,recall ad f-measure.Finally,a classifier with the best performance is recommended for the emotion classification.
基金The authors extend their appreciation to National University of Sciences and Technology for funding this work through Researchers Supporting Grant,National University of Sciences and Technology,Islamabad,Pakistan.
文摘With the advent and advancements in the wireless technologies,Wi-Fi ngerprinting-based Indoor Positioning System(IPS)has become one of the most promising solutions for localization in indoor environments.Unlike the outdoor environment,the lack of line-of-sight propagation in an indoor environment keeps the interest of the researchers to develop efcient and precise positioning systems that can later be incorporated in numerous applications involving Internet of Things(IoTs)and green computing.In this paper,we have proposed a technique that combines the capabilities of multiple algorithms to overcome the complexities experienced indoors.Initially,in the database development phase,Motley Kennan propagation model is used with Hough transformation to classify,detect,and assign different attenuation factors related to the types of walls.Furthermore,important parameters for system accuracy,such as,placement and geometry of Access Points(APs)in the coverage area are also considered.New algorithm for deployment of an additional AP to an already existing infrastructure is proposed by using Genetic Algorithm(GA)coupled with Enhanced Dilution of Precision(EDOP).Moreover,classication algorithm based on k-Nearest Neighbors(k-NN)is used to nd the position of a stationary or mobile user inside the given coverage area.For k-NN to provide low localization error and reduced space dimensionality,three APs are required to be selected optimally.In this paper,we have suggested an idea to select APs based on Position Vectors(PV)as an input to the localization algorithm.Deducing from our comprehensive investigations,it is revealed that the accuracy of indoor positioning system using the proposed technique unblemished the existing solutions with signicant improvements.
基金The authors extend their appreciation to the National University of Sciences and Technology for funding this work through the Researchers Supporting Grant,National University of Sciences and Technology,Islamabad,Pakistan.
文摘Due to the inability of the Global Positioning System(GPS)signals to penetrate through surfaces like roofs,walls,and other objects in indoor environments,numerous alternative methods for user positioning have been presented.Amongst those,the Wi-Fi fingerprinting method has gained considerable interest in Indoor Positioning Systems(IPS)as the need for lineof-sight measurements is minimal,and it achieves better efficiency in even complex indoor environments.Offline and online are the two phases of the fingerprinting method.Many researchers have highlighted the problems in the offline phase as it deals with huge datasets and validation of Fingerprints without pre-processing of data becomes a concern.Machine learning is used for the model training in the offline phase while the locations are estimated in the online phase.Many researchers have considered the concerns in the offline phase as it deals with huge datasets and validation of Fingerprints becomes an issue.Machine learning algorithms are a natural solution for winnowing through large datasets and determining the significant fragments of information for localization,creating precise models to predict an indoor location.Large training sets are a key for obtaining better results in machine learning problems.Therefore,an existing WLAN fingerprinting-based multistory building location database has been used with 21049 samples including 19938 training and 1111 testing samples.The proposed model consists of mean and median filtering as pre-processing techniques applied to the database for enhancing the accuracy by mitigating the impact of environmental dispersion and investigated machine learning algorithms(kNN,WkNN,FSkNN,and SVM)for estimating the location.The proposed SVM with median filtering algorithm gives a reduced mean positioning error of 0.7959 m and an improved efficiency of 92.84%as compared to all variants of the proposed method for 108703 m^(2) area.