This paper investigates the problem of data scarcity in spectrum prediction.A cognitive radio equipment may frequently switch the target frequency as the electromagnetic environment changes.The previously trained mode...This paper investigates the problem of data scarcity in spectrum prediction.A cognitive radio equipment may frequently switch the target frequency as the electromagnetic environment changes.The previously trained model for prediction often cannot maintain a good performance when facing small amount of historical data of the new target frequency.Moreover,the cognitive radio equipment usually implements the dynamic spectrum access in real time which means the time to recollect the data of the new task frequency band and retrain the model is very limited.To address the above issues,we develop a crossband data augmentation framework for spectrum prediction by leveraging the recent advances of generative adversarial network(GAN)and deep transfer learning.Firstly,through the similarity measurement,we pre-train a GAN model using the historical data of the frequency band that is the most similar to the target frequency band.Then,through the data augmentation by feeding the small amount of the target data into the pre-trained GAN,temporal-spectral residual network is further trained using deep transfer learning and the generated data with high similarity from GAN.Finally,experiment results demonstrate the effectiveness of the proposed framework.展开更多
Spectrum prediction is a promising technology to infer future spectrum state by exploiting inherent patterns of historical spectrum data.In practice,for a given spectrum band of interest,when facing relatively scarce ...Spectrum prediction is a promising technology to infer future spectrum state by exploiting inherent patterns of historical spectrum data.In practice,for a given spectrum band of interest,when facing relatively scarce historical data,spectrum prediction based on traditional learning methods does not work well.Thus,this paper proposes a cross-band spectrum prediction model based on transfer learning.Firstly,by analysing service activities and computing the distances between various frequency points based on Dynamic Time Warping,the similarity between spectrum bands has been verified.Next,the features,which mainly affect the performance of transfer learning in the crossband spectrum prediction,are explored by leveraging transfer component analysis.Then,the effectiveness of transfer learning for the cross-band spectrum prediction has been demonstrated.Further,experimental results with real-world spectrum data demonstrate that the performance of the proposed model is better than the state-of-theart models when the historical spectrum data is limited.展开更多
Communication behavior recognition is an issue with increasingly importance in the antiterrorism and national defense area.However,the sensing data obtained in actual environment is often not sufficient to accurately ...Communication behavior recognition is an issue with increasingly importance in the antiterrorism and national defense area.However,the sensing data obtained in actual environment is often not sufficient to accurately analyze the communication behavior.Traditional means can hardly utilize the scarce and crude spectrum sensing data captured in a real scene.Thus,communication behavior recognition using raw sensing data under smallsample condition has become a new challenge.In this paper,a data enhanced communication behavior recognition(DECBR)scheme is proposed to meet this challenge.Firstly,a preprocessing method is designed to make the raw spectrum data suitable for the proposed scheme.Then,an adaptive convolutional neural network structure is exploited to carry out communication behavior recognition.Moreover,DCGAN is applied to support data enhancement,which realize communication behavior recognition under small-sample condition.Finally,the scheme is verified by experiments under different data size.The results show that the DECBR scheme can greatly improve the accuracy and efficiency of behavior recognition under smallsample condition.展开更多
基金This work was supported by the Science and Technology Innovation 2030-Key Project of“New Generation Artificial Intelligence”of China under Grant 2018AAA0102303the Natural Science Foundation for Distinguished Young Scholars of Jiangsu Province(No.BK20190030)the National Natural Science Foundation of China(No.61631020,No.61871398,No.61931011 and No.U20B2038).
文摘This paper investigates the problem of data scarcity in spectrum prediction.A cognitive radio equipment may frequently switch the target frequency as the electromagnetic environment changes.The previously trained model for prediction often cannot maintain a good performance when facing small amount of historical data of the new target frequency.Moreover,the cognitive radio equipment usually implements the dynamic spectrum access in real time which means the time to recollect the data of the new task frequency band and retrain the model is very limited.To address the above issues,we develop a crossband data augmentation framework for spectrum prediction by leveraging the recent advances of generative adversarial network(GAN)and deep transfer learning.Firstly,through the similarity measurement,we pre-train a GAN model using the historical data of the frequency band that is the most similar to the target frequency band.Then,through the data augmentation by feeding the small amount of the target data into the pre-trained GAN,temporal-spectral residual network is further trained using deep transfer learning and the generated data with high similarity from GAN.Finally,experiment results demonstrate the effectiveness of the proposed framework.
基金supported by the National Key R&D Program of China under Grant 2018AAA0102303 and Grant 2018YFB1801103the National Natural Science Foundation of China (No. 61871398 and No. 61931011)+1 种基金the Natural Science Foundation for Distinguished Young Scholars of Jiangsu Province (No. BK20190030)the Equipment Advanced Research Field Foundation (No. 61403120304)
文摘Spectrum prediction is a promising technology to infer future spectrum state by exploiting inherent patterns of historical spectrum data.In practice,for a given spectrum band of interest,when facing relatively scarce historical data,spectrum prediction based on traditional learning methods does not work well.Thus,this paper proposes a cross-band spectrum prediction model based on transfer learning.Firstly,by analysing service activities and computing the distances between various frequency points based on Dynamic Time Warping,the similarity between spectrum bands has been verified.Next,the features,which mainly affect the performance of transfer learning in the crossband spectrum prediction,are explored by leveraging transfer component analysis.Then,the effectiveness of transfer learning for the cross-band spectrum prediction has been demonstrated.Further,experimental results with real-world spectrum data demonstrate that the performance of the proposed model is better than the state-of-theart models when the historical spectrum data is limited.
基金supported by the National Natural Science Foundation of China(No.61971439 and No.61702543)the Natural Science Foundation of the Jiangsu Province of China(No.BK20191329)+1 种基金the China Postdoctoral Science Foundation Project(No.2019T120987)the Startup Foundation for Introducing Talent of NUIST(No.2020r100).
文摘Communication behavior recognition is an issue with increasingly importance in the antiterrorism and national defense area.However,the sensing data obtained in actual environment is often not sufficient to accurately analyze the communication behavior.Traditional means can hardly utilize the scarce and crude spectrum sensing data captured in a real scene.Thus,communication behavior recognition using raw sensing data under smallsample condition has become a new challenge.In this paper,a data enhanced communication behavior recognition(DECBR)scheme is proposed to meet this challenge.Firstly,a preprocessing method is designed to make the raw spectrum data suitable for the proposed scheme.Then,an adaptive convolutional neural network structure is exploited to carry out communication behavior recognition.Moreover,DCGAN is applied to support data enhancement,which realize communication behavior recognition under small-sample condition.Finally,the scheme is verified by experiments under different data size.The results show that the DECBR scheme can greatly improve the accuracy and efficiency of behavior recognition under smallsample condition.