This paper focuses on the extraction of a harmonic signal from multiplicative and additive noises. A method is proposed in two stages: (1) to square the original discrete time series, which includes both signals an...This paper focuses on the extraction of a harmonic signal from multiplicative and additive noises. A method is proposed in two stages: (1) to square the original discrete time series, which includes both signals and noises, and form a new time series. By this means, the multiplicative noise is converted to additive noise; and (2) to filter out the noise by using existing noise removal schemes. With a large amount of simulation, experimental results demonstrated the efficiency and effectiveness of this newly developed method in terms of Signal-to-Noise Ratio (SNR) and other criteria. Prom the experiment, it is also found that: the two kinds of noises affect the SNR differently. In general, the SNR is not influenced by multiplicative Gaussian noise regardless of its variance. However, if both kinds of noise exist, the SNR decreases with the incensement of the Variance of Additive Noise to Multiplicative Noise Ratio (VAMNR). This analysis is also supported by simulation work.展开更多
目的针对从单幅人脸图像中恢复面部纹理图时获得的信息不完整、纹理细节不够真实等问题,提出一种基于生成对抗网络的人脸全景纹理图生成方法。方法将2维人脸图像与3维人脸模型之间的特征关系转换为编码器中的条件参数,从图像数据与人脸...目的针对从单幅人脸图像中恢复面部纹理图时获得的信息不完整、纹理细节不够真实等问题,提出一种基于生成对抗网络的人脸全景纹理图生成方法。方法将2维人脸图像与3维人脸模型之间的特征关系转换为编码器中的条件参数,从图像数据与人脸条件参数的多元高斯分布中得到隐层数据的概率分布,用于在生成器中学习人物的头面部纹理特征。在新创建的人脸纹理图数据集上训练一个全景纹理图生成模型,利用不同属性的鉴别器对输出结果进行评估反馈,提升生成纹理图的完整性和真实性。结果实验与当前最新方法进行了比较,在Celeb A-HQ和LFW(labled faces in the wild)数据集中随机选取单幅正面人脸测试图像,经生成结果的可视化对比及3维映射显示效果对比,纹理图的完整度和显示效果均优于其他方法。通过全局和面部区域的像素量化指标进行数据比较,相比于UVGAN,全局峰值信噪比(peak signal to noise ratio,PSNR)和全局结构相似性(structural similarity index,SSIM)分别提高了7.9 d B和0.088,局部PSNR和局部SSIM分别提高了2.8 d B和0.053;相比于OSTe C,全局PSNR和全局SSIM分别提高了5.45 d B和0.043,局部PSNR和局部SSIM分别提高了0.4 d B和0.044;相比于MVF-Net(multi-view 3D face network),局部PSNR和局部SSIM分别提高了0.6和0.119。实验结果证明,提出的人脸全景纹理图生成方法解决了从单幅人脸图像中重建面部纹理不完整的问题,改善了生成纹理图的显示细节。结论本文提出的人脸全景纹理图生成方法,利用人脸参数和网络模型的特性,使生成的人脸纹理图更完整,尤其是对原图不可见区域,像素恢复自然连贯,纹理细节更真实。展开更多
A method for accurate reconstruction of the harmonic signals from bispectrum is presented. Based on the analysis of the measured harmonic signal, a sinusoid signal with Ophase, 1-amplitude and half of the fundamental...A method for accurate reconstruction of the harmonic signals from bispectrum is presented. Based on the analysis of the measured harmonic signal, a sinusoid signal with Ophase, 1-amplitude and half of the fundamental frequency combines with the measured signal to form a combined signal, and then the bispectrum analysis is carried out to reconstruct the phase and the amplitude of the measured signal accurately. Without the zero-phase assumption of the fundamental component, using the new method eliminates the phase shifting between the calculated Fourier phase and the true Fourier phase in the existing signal retrieval methods based on bispectrum. The simulation results show the effectiveness of the new method.展开更多
The features of the ship noises are analyzed by using the higher-order spectrum (HOS) after studying their distribution. The results show that the different ship noise has different ranges of the main frequency. The m...The features of the ship noises are analyzed by using the higher-order spectrum (HOS) after studying their distribution. The results show that the different ship noise has different ranges of the main frequency. The main frequencies of the first class ships are less than 120 Hz, while the second class ships drop in 130 Hz -- 320 Hz. The different relationship between w1 and w2 corresponds to different bispectrum graph. There are the same results in the trispectrum. The feature vector is consist of the wls which correspond to the maximum bispectrum B(wl, wl) and the maximum trispectrum B(wl, w1,wl) respectively, the al, w2 which correspond to the maximum bispectrum B(wl, w2).展开更多
基金Supported by the Natural Science Foundation of Shaanxi Province (No.2003F40).
文摘This paper focuses on the extraction of a harmonic signal from multiplicative and additive noises. A method is proposed in two stages: (1) to square the original discrete time series, which includes both signals and noises, and form a new time series. By this means, the multiplicative noise is converted to additive noise; and (2) to filter out the noise by using existing noise removal schemes. With a large amount of simulation, experimental results demonstrated the efficiency and effectiveness of this newly developed method in terms of Signal-to-Noise Ratio (SNR) and other criteria. Prom the experiment, it is also found that: the two kinds of noises affect the SNR differently. In general, the SNR is not influenced by multiplicative Gaussian noise regardless of its variance. However, if both kinds of noise exist, the SNR decreases with the incensement of the Variance of Additive Noise to Multiplicative Noise Ratio (VAMNR). This analysis is also supported by simulation work.
文摘目的针对从单幅人脸图像中恢复面部纹理图时获得的信息不完整、纹理细节不够真实等问题,提出一种基于生成对抗网络的人脸全景纹理图生成方法。方法将2维人脸图像与3维人脸模型之间的特征关系转换为编码器中的条件参数,从图像数据与人脸条件参数的多元高斯分布中得到隐层数据的概率分布,用于在生成器中学习人物的头面部纹理特征。在新创建的人脸纹理图数据集上训练一个全景纹理图生成模型,利用不同属性的鉴别器对输出结果进行评估反馈,提升生成纹理图的完整性和真实性。结果实验与当前最新方法进行了比较,在Celeb A-HQ和LFW(labled faces in the wild)数据集中随机选取单幅正面人脸测试图像,经生成结果的可视化对比及3维映射显示效果对比,纹理图的完整度和显示效果均优于其他方法。通过全局和面部区域的像素量化指标进行数据比较,相比于UVGAN,全局峰值信噪比(peak signal to noise ratio,PSNR)和全局结构相似性(structural similarity index,SSIM)分别提高了7.9 d B和0.088,局部PSNR和局部SSIM分别提高了2.8 d B和0.053;相比于OSTe C,全局PSNR和全局SSIM分别提高了5.45 d B和0.043,局部PSNR和局部SSIM分别提高了0.4 d B和0.044;相比于MVF-Net(multi-view 3D face network),局部PSNR和局部SSIM分别提高了0.6和0.119。实验结果证明,提出的人脸全景纹理图生成方法解决了从单幅人脸图像中重建面部纹理不完整的问题,改善了生成纹理图的显示细节。结论本文提出的人脸全景纹理图生成方法,利用人脸参数和网络模型的特性,使生成的人脸纹理图更完整,尤其是对原图不可见区域,像素恢复自然连贯,纹理细节更真实。
基金The project supported by National Education Ministry Doctor Foundation of China
文摘A method for accurate reconstruction of the harmonic signals from bispectrum is presented. Based on the analysis of the measured harmonic signal, a sinusoid signal with Ophase, 1-amplitude and half of the fundamental frequency combines with the measured signal to form a combined signal, and then the bispectrum analysis is carried out to reconstruct the phase and the amplitude of the measured signal accurately. Without the zero-phase assumption of the fundamental component, using the new method eliminates the phase shifting between the calculated Fourier phase and the true Fourier phase in the existing signal retrieval methods based on bispectrum. The simulation results show the effectiveness of the new method.
基金The project is supported by National Education Ministry Doctor Foundation of China
文摘The features of the ship noises are analyzed by using the higher-order spectrum (HOS) after studying their distribution. The results show that the different ship noise has different ranges of the main frequency. The main frequencies of the first class ships are less than 120 Hz, while the second class ships drop in 130 Hz -- 320 Hz. The different relationship between w1 and w2 corresponds to different bispectrum graph. There are the same results in the trispectrum. The feature vector is consist of the wls which correspond to the maximum bispectrum B(wl, wl) and the maximum trispectrum B(wl, w1,wl) respectively, the al, w2 which correspond to the maximum bispectrum B(wl, w2).