期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
典型山西黄土高原区土壤有机质的空间异质性及空间插值预测 被引量:2
1
作者 张小美 高春瑞 +7 位作者 闫晓斌 杨莎 乔星星 王超 杨武德 fahad shafiq 冯美臣 李广信 《山西农业科学》 2023年第7期785-792,共8页
农田土壤有机碳库储量是评估其固碳减排潜力的重要依据,而土壤有机碳(SOC)周转受到气候(温度和降水)、地形(坡度和高程)等环境变量的影响。为了明确环境变量因子对SOC的影响及实现SOC的空间插值预测,为理解小尺度SOC的空间异质性及精确... 农田土壤有机碳库储量是评估其固碳减排潜力的重要依据,而土壤有机碳(SOC)周转受到气候(温度和降水)、地形(坡度和高程)等环境变量的影响。为了明确环境变量因子对SOC的影响及实现SOC的空间插值预测,为理解小尺度SOC的空间异质性及精确制图提供一定理论和实践参考,研究利用反距离加权法(IDW)、径向基函数法(RBF)、普通克里格插值(OK)、多元线性回归(MLR)、回归克里格法(RK)、回归反距离加权法(MIDW)、回归径向基函数法(MRBF)等7种插值方法,探寻地形因子和气候因子与SOC的关系,并选出能更好预测SOC空间分布的空间插值模型。结果表明,SOC含量与高程(-0.255^(**))、温度(-0.246^(**))、坡度(-0.214^(**))及降水量(-0.085^(*))均呈显著负相关关系,其中高程与SOC的关系最为密切。对比不同插值模型的预测表现可知,MLR的均方根误差为0.083,小于OK、RBF、IDW、RK、MRBF、MIDW的均方根误差;MRBF的平均绝对误差为2.506,小于OK、RBF、IDW、MLR、RK、MIDW的平均绝对误差;MRBF的皮尔逊相关系数为0.674,大于OK、RBF、IDW、MLR、RK、MIDW的皮尔逊相关系数,因此,基于MRBF方法的SOC预测效果最好。 展开更多
关键词 土壤有机碳 影响因素 空间分析 插值方法 地形 数字土壤制图
在线阅读 下载PDF
Estimation of generalized soil structure index based on differential spectra of different orders by multivariate assessment
2
作者 Sha Yang Zhigang Wang +8 位作者 Chenbo Yang Chao Wang Ziyang Wang Xiaobin Yan Xingxing Qiao Meichen Feng Lujie Xiao fahad shafiq Wude Yang 《International Soil and Water Conservation Research》 SCIE CSCD 2024年第2期313-321,共9页
Better soil structure promotes extension of plant roots thereby improving plant growth and yield.Differences in soil structure can be determined by changes in the three phases of soil,which in turn affect soil functio... Better soil structure promotes extension of plant roots thereby improving plant growth and yield.Differences in soil structure can be determined by changes in the three phases of soil,which in turn affect soil function and fertility levels.To compare the quality of soil structure under different conditions,we used Generalized Soil Structure Index(GSSI)as an indicator to determine the relationship between the“input”of soil three phases and the“output”of soil structure.To achieve optimum monitoring of comprehensive indicators,we used Successive Projections Algorithm(SPA)for differential processing based on 0.0–2.0 fractional orders and 3.0–10.0 integer orders and select important wavelengths to process soil spectral data.In addition,we also applied multivariate regression learning models including Gaussian Process Regression(GPR)and Artificial Neural Network(ANN),exploring potential capabilities of hyperspectral in predicting GSSI.The results showed that spectral reflection,mainly contributed by long-wave near-infrared radiation had an inverse relationship with GSSI values.The wavelengths between 404-418 nm and 2193–2400 nm were important GSSI wavelengths in fractional differential spectroscopy data,while those ranging from 543 to 999 nm were important GSSI wavelengths in integer differential spectroscopy data.Also,non-linear models were more accurate than linear models.In addition,wide neural networks were best suited for establishing fractional-order differentiation and second-order differentiation models,while fine Gaussian support vector machines were best suited for establishing first-order differentiation models.In terms of preprocessing,a differential order of 0.9 was found as the best choice.From the results,we propose that when constructing optimal prediction models,it is necessary to consider indicators,differential orders,and model adaptability.Above all,this study provided a new method for an in-depth analyses of generalized soil structure.This also fills the gap limiting the detection of soil three phases structural characteristics and their dynamic changes and provides a technical references for quantitative and rapid evaluation of soil structure,function,and quality. 展开更多
关键词 Three-phase soil Generalized soil structure index HYPERSPECTRAL Differential spectrum Regression learning model
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部