CNTs-Cu and graphite-Cu composites were separately prepared by powder metallurgy technique under the same consolidation processing. Tribological behavior of the composites with electric current was investigated by usi...CNTs-Cu and graphite-Cu composites were separately prepared by powder metallurgy technique under the same consolidation processing. Tribological behavior of the composites with electric current was investigated by using a pin-on-disk friction and wear tester. The results show that the friction coefficient and wear rate of the composites decrease with increasing the reinforcement content, and increase with increasing the electric current density; the effects of electric current are more obvious on tribological properties of graphite-Cu composites than on CNTs-Cu composites; for graphite-Cu composites the dominant wear mechanisms are electric arc erosion and adhesive wear, while for CNTs-Cu composites are adhesive wear.展开更多
Numerical investigations on the flow field in Ti-Al melt during rectangular cold crucible directional solidification were carried out. Combined with the experimental results, 3-D finite element models for calculating ...Numerical investigations on the flow field in Ti-Al melt during rectangular cold crucible directional solidification were carried out. Combined with the experimental results, 3-D finite element models for calculating flow field inside melting pool were established, the characteristics of the flow under different power parameters were further studied. Numerical calculation results show that there is a complex circular flow in the melt, a rapid horizontal flow exists on the solid/liquid interface and those flows confluence in the center of the melting pool. The flow velocity v increases with the increase of current intensity, but the flow patterns remain unchanged. When the current is 1000 A, the vmax reaches 4 mm/s and the flow on the interface achieves 3 mm/s. Flow patterns are quite different when the frequency changes from 10 kHz to 100 kHz, the mechanism of the frequency influence on the flow pattern is analyzed, and there is an optimum frequency for cold crucible directional solidification.展开更多
A 0.7 mm-thick wavy γ-TiAl sheet with fully lamellar microstructure was fabricated by hot pressing Ti/Al alternate foils with heat treatment of 640 °C, 15 h+850 °C, 35 h+1350 °C, 2 h. The intermetall...A 0.7 mm-thick wavy γ-TiAl sheet with fully lamellar microstructure was fabricated by hot pressing Ti/Al alternate foils with heat treatment of 640 °C, 15 h+850 °C, 35 h+1350 °C, 2 h. The intermetallic compounds formed during heat treatments were identified by scanning electron microscopy (SEM) and X-ray diffraction (XRD). TiAl3 was the only observed phase at the Ti/Al interface when Al foils were not consumed. After being annealed at 850 °C for 35 h, the microstructure was composed of α-Ti, α2-Ti3Al, γ-TiAl and TiAl2. A fully lamellar microstructure formed after annealing at 1350 °C. Most of the angles between the lamellar interface and the sheet plane are below 30°. Using thinner starting foils is favorable to produce sheets with fine microstructure.展开更多
Microcasting is one of the significant technologies for the production of metallic micro parts with high aspect ratio(ratio of flow length to diameter).A micro precision casting technology based on investment casting ...Microcasting is one of the significant technologies for the production of metallic micro parts with high aspect ratio(ratio of flow length to diameter).A micro precision casting technology based on investment casting using centrifugal method was investigated.The micro parts of Zn-4%Al alloy with an aspect ratio up to 200 was produced at the centrifugal speed of 1 500 r/min and the mold temperature of 270℃.The investigations on the relationship between flow length and rotational speed were carried out. For microcasting,the flow length is not only dependent on the centrifugal speed under the constant centrifugal radius,but also on the preheating temperature of mold.The flow length increases as the rotational speed and the mold temperature increase,and is much higher at a mold temperature of 270 ℃thanat other mold temperatures.展开更多
A binary continuum model for dendritic solidification transport phenomena and corresponding numerical algorithm for the strong nonlinear coupling of T-fS-CL were extended to multicomponent alloys solidified under cond...A binary continuum model for dendritic solidification transport phenomena and corresponding numerical algorithm for the strong nonlinear coupling of T-fS-CL were extended to multicomponent alloys solidified under condition of Biot≤0.1. Based on the extended model/algorithm, a method considering heat transfer was proposed to predict the solidification paths and microsegregation of alloys solidified under the same condition. The new algorithm and method were closely coupled with the commercial Thermo-Calc package via its TQ6-interface codes for instantaneous determination of the related thermodynamic data at each calculation time step. The sample simulation performed on an Al-2Si-3Mg alloy system indicates the availability and reliability of the model/algorithm and the proposed method for predicting solidification paths and microsegregation. Computional and experimental investigations on an Al-5.17Cu-2.63Si ternary alloy were conducted, and a reasonable agreement between the computation and experiment was obtained.展开更多
The parameters and factors that influence the surface quality and macrostructure of titanium alloy with reactive properties under liquid state were studied experimentally using a cold crucible electromagnetic casting ...The parameters and factors that influence the surface quality and macrostructure of titanium alloy with reactive properties under liquid state were studied experimentally using a cold crucible electromagnetic casting method. The variations in the process parameters have great impact on the surface quality and macrostructure of cast billets. Billets with crack free and smooth surfaces as well as directional solidified primary structures were obtained after the selection of optimized process parameters. The formation mechanisms of defects such as cracks and non-directional structural morphology were interpreted briefly. Finally,the casting of billets with good outer qualities and inner column grains has been attained successfully,which in turn gives a solid foundation for further development of the technology.展开更多
Effects of hydrogenation on ambient deformation behaviors of Ti-45Al alloy were studied.The stress-strain curves demonstrate that the plastic deformation of the hydrogenated alloys becomes more remarkable than that of...Effects of hydrogenation on ambient deformation behaviors of Ti-45Al alloy were studied.The stress-strain curves demonstrate that the plastic deformation of the hydrogenated alloys becomes more remarkable than that of the unhydrogenated alloy. Meanwhile,the compression strength and maximum strain are reduced.Both the hydride and hydrogen atoms in the interstices affect the compression deformation behaviors.The reason of the hydrogen-induced embrittlement is that the hydride is easy to become the nucleus of the cracks.And the variation of plastic deformation process is attributed to hydrogen-promoted emission,multiplication and motion of dislocation.展开更多
Experiments of continuous and directional solidification of titanium alloy slabs were performed using authors-designed multi-function directional solidification apparatus with rectangular cold crucible. Influences of ...Experiments of continuous and directional solidification of titanium alloy slabs were performed using authors-designed multi-function directional solidification apparatus with rectangular cold crucible. Influences of processing parameters on the surface qualities of the solidified slabs were studied. It is shown that the slab surface qualities can be effectively improved with increasing of the turns in coil and input power, and with decreasing of withdrawal velocity and relatively low position of pedestal to the induction coil. The influences of the processing parameters in the descending order are as follows: the turns in coil, input power, withdrawal velocity and the relative position of pedestal. With optimized parameters, quality slabs free from cracks and ripples were obtained. The solidified structure with good surface quality shows directionally solidified structure.展开更多
The numerical simulation technique was applied to the casting process of a valve-type part. The mold-filling and solidification stages of the casting were numerically analyzed. The filling behavior, solidification seq...The numerical simulation technique was applied to the casting process of a valve-type part. The mold-filling and solidification stages of the casting were numerically analyzed. The filling behavior, solidification sequence, and thermal stress distribution were reproduced and the possible defects, such as cold shut and shrinkage, were predicted. Based on the simulation result, the double-gating system was replaced by a single-gating system. Meanwhile, the chills were used to regulate the solidification sequence of casting. To eliminate the cracks in the casting, the sand core was converted into a canulate one. By modifying the original process, the defects were eliminated and the casting with good quality was obtained.展开更多
Solute diffusion controlled solidification model was used to simulate the initial stage cellular to dendrite transition of Ti44Al alloys during directional solidification at different velocities. The simulation result...Solute diffusion controlled solidification model was used to simulate the initial stage cellular to dendrite transition of Ti44Al alloys during directional solidification at different velocities. The simulation results show that during this process, a mixed structure composed of cells and dendrites was observed, where secondary dendrites are absent at facing surface with parallel closely spaced dendrites, which agrees with the previous experimental observation. The dendrite spacings are larger than cellular spacings at a given rate, and the columnar grain spacing sharply increases to a maximum as solidification advance to coexistence zone. In addition, simulation also revealed that decreasing the numbers of the seed causes the trend of unstable dendrite transition to increase. Finally, the main influence factors affecting cell/dendrite transition were analyzed, which could be the change of growth rates resulting in slight fluctuations of liquid composition occurred at growth front. The simulation results are in reasonable agreement with the results of previous theoretical models and experimental observation at low cooling rates.展开更多
基金Project (2007CB607603) supported by the National Basic Research Program of China
文摘CNTs-Cu and graphite-Cu composites were separately prepared by powder metallurgy technique under the same consolidation processing. Tribological behavior of the composites with electric current was investigated by using a pin-on-disk friction and wear tester. The results show that the friction coefficient and wear rate of the composites decrease with increasing the reinforcement content, and increase with increasing the electric current density; the effects of electric current are more obvious on tribological properties of graphite-Cu composites than on CNTs-Cu composites; for graphite-Cu composites the dominant wear mechanisms are electric arc erosion and adhesive wear, while for CNTs-Cu composites are adhesive wear.
基金Project (2011CB605504) supported by the National Basic Research Program of China
文摘Numerical investigations on the flow field in Ti-Al melt during rectangular cold crucible directional solidification were carried out. Combined with the experimental results, 3-D finite element models for calculating flow field inside melting pool were established, the characteristics of the flow under different power parameters were further studied. Numerical calculation results show that there is a complex circular flow in the melt, a rapid horizontal flow exists on the solid/liquid interface and those flows confluence in the center of the melting pool. The flow velocity v increases with the increase of current intensity, but the flow patterns remain unchanged. When the current is 1000 A, the vmax reaches 4 mm/s and the flow on the interface achieves 3 mm/s. Flow patterns are quite different when the frequency changes from 10 kHz to 100 kHz, the mechanism of the frequency influence on the flow pattern is analyzed, and there is an optimum frequency for cold crucible directional solidification.
基金Project (50771041) supported by the National Natural Science Foundation of ChinaProject (05-0350) supported by the New Century Excellent Talents in University, China
文摘A 0.7 mm-thick wavy γ-TiAl sheet with fully lamellar microstructure was fabricated by hot pressing Ti/Al alternate foils with heat treatment of 640 °C, 15 h+850 °C, 35 h+1350 °C, 2 h. The intermetallic compounds formed during heat treatments were identified by scanning electron microscopy (SEM) and X-ray diffraction (XRD). TiAl3 was the only observed phase at the Ti/Al interface when Al foils were not consumed. After being annealed at 850 °C for 35 h, the microstructure was composed of α-Ti, α2-Ti3Al, γ-TiAl and TiAl2. A fully lamellar microstructure formed after annealing at 1350 °C. Most of the angles between the lamellar interface and the sheet plane are below 30°. Using thinner starting foils is favorable to produce sheets with fine microstructure.
文摘Microcasting is one of the significant technologies for the production of metallic micro parts with high aspect ratio(ratio of flow length to diameter).A micro precision casting technology based on investment casting using centrifugal method was investigated.The micro parts of Zn-4%Al alloy with an aspect ratio up to 200 was produced at the centrifugal speed of 1 500 r/min and the mold temperature of 270℃.The investigations on the relationship between flow length and rotational speed were carried out. For microcasting,the flow length is not only dependent on the centrifugal speed under the constant centrifugal radius,but also on the preheating temperature of mold.The flow length increases as the rotational speed and the mold temperature increase,and is much higher at a mold temperature of 270 ℃thanat other mold temperatures.
基金Projects (2008112042) supported by the Open Project of State Key Laboratory of Powder Metallurgy of Central South University, ChinaProjects (50771041, 50801019) supported by the National Natural Science Foundation of ChinaProject (2011CB610406) supported by the National Basic Research Program of China
文摘A binary continuum model for dendritic solidification transport phenomena and corresponding numerical algorithm for the strong nonlinear coupling of T-fS-CL were extended to multicomponent alloys solidified under condition of Biot≤0.1. Based on the extended model/algorithm, a method considering heat transfer was proposed to predict the solidification paths and microsegregation of alloys solidified under the same condition. The new algorithm and method were closely coupled with the commercial Thermo-Calc package via its TQ6-interface codes for instantaneous determination of the related thermodynamic data at each calculation time step. The sample simulation performed on an Al-2Si-3Mg alloy system indicates the availability and reliability of the model/algorithm and the proposed method for predicting solidification paths and microsegregation. Computional and experimental investigations on an Al-5.17Cu-2.63Si ternary alloy were conducted, and a reasonable agreement between the computation and experiment was obtained.
基金This work was supported by the National Key Fundamental Research Development Program of China (G200067202-2)the Natural Science Fund of China (50395102).
文摘The parameters and factors that influence the surface quality and macrostructure of titanium alloy with reactive properties under liquid state were studied experimentally using a cold crucible electromagnetic casting method. The variations in the process parameters have great impact on the surface quality and macrostructure of cast billets. Billets with crack free and smooth surfaces as well as directional solidified primary structures were obtained after the selection of optimized process parameters. The formation mechanisms of defects such as cracks and non-directional structural morphology were interpreted briefly. Finally,the casting of billets with good outer qualities and inner column grains has been attained successfully,which in turn gives a solid foundation for further development of the technology.
基金Project(50771041)supported by the National Natural Science Foundation of China。
文摘Effects of hydrogenation on ambient deformation behaviors of Ti-45Al alloy were studied.The stress-strain curves demonstrate that the plastic deformation of the hydrogenated alloys becomes more remarkable than that of the unhydrogenated alloy. Meanwhile,the compression strength and maximum strain are reduced.Both the hydride and hydrogen atoms in the interstices affect the compression deformation behaviors.The reason of the hydrogen-induced embrittlement is that the hydride is easy to become the nucleus of the cracks.And the variation of plastic deformation process is attributed to hydrogen-promoted emission,multiplication and motion of dislocation.
基金The paper is supported by Natural Science Foundation of China, 50395102 and National Key Fundamental ResearchDevelopment Program of China, G200067202-2.
文摘Experiments of continuous and directional solidification of titanium alloy slabs were performed using authors-designed multi-function directional solidification apparatus with rectangular cold crucible. Influences of processing parameters on the surface qualities of the solidified slabs were studied. It is shown that the slab surface qualities can be effectively improved with increasing of the turns in coil and input power, and with decreasing of withdrawal velocity and relatively low position of pedestal to the induction coil. The influences of the processing parameters in the descending order are as follows: the turns in coil, input power, withdrawal velocity and the relative position of pedestal. With optimized parameters, quality slabs free from cracks and ripples were obtained. The solidified structure with good surface quality shows directionally solidified structure.
基金Item Sponsored by the Innovation Fund for Outstanding Scholar of Henan Province of China (0621000700)
文摘The numerical simulation technique was applied to the casting process of a valve-type part. The mold-filling and solidification stages of the casting were numerically analyzed. The filling behavior, solidification sequence, and thermal stress distribution were reproduced and the possible defects, such as cold shut and shrinkage, were predicted. Based on the simulation result, the double-gating system was replaced by a single-gating system. Meanwhile, the chills were used to regulate the solidification sequence of casting. To eliminate the cracks in the casting, the sand core was converted into a canulate one. By modifying the original process, the defects were eliminated and the casting with good quality was obtained.
基金National Natural Science Foundation of China (50434030)
文摘Solute diffusion controlled solidification model was used to simulate the initial stage cellular to dendrite transition of Ti44Al alloys during directional solidification at different velocities. The simulation results show that during this process, a mixed structure composed of cells and dendrites was observed, where secondary dendrites are absent at facing surface with parallel closely spaced dendrites, which agrees with the previous experimental observation. The dendrite spacings are larger than cellular spacings at a given rate, and the columnar grain spacing sharply increases to a maximum as solidification advance to coexistence zone. In addition, simulation also revealed that decreasing the numbers of the seed causes the trend of unstable dendrite transition to increase. Finally, the main influence factors affecting cell/dendrite transition were analyzed, which could be the change of growth rates resulting in slight fluctuations of liquid composition occurred at growth front. The simulation results are in reasonable agreement with the results of previous theoretical models and experimental observation at low cooling rates.