Within McHenry County, IL, the fastest growing county in Illinois, groundwater is used for 100% of the water needs. Concerns over water resources have prompted the investigation of the surficial sand and gravel aquife...Within McHenry County, IL, the fastest growing county in Illinois, groundwater is used for 100% of the water needs. Concerns over water resources have prompted the investigation of the surficial sand and gravel aquifers of the county. While the eastern portion of the county is urbanizing, the western portion remains devoted to agriculture. High-capacity irrigation wells screened within the surficial sand and gravel aquifer are used for crop production. To assess the impacts of the irrigation wells on the aquifer, a groundwater flow model was developed to examine five different scenarios reflecting drought conditions and increased pumping. Results show that the surficial sand and gravel aquifer is capable of meeting current water demands even if recharge is decreased 20% and pumping is increased 20%. The additional loss of discharge and increases in pumping result in head differences throughout the aquifer.展开更多
As temperatures rise and climate change becomes an increasingly important issue, geologic carbon dioxide (CO<sub>2</sub>) sequestration is a viable solution for reducing greenhouse gas emissions. Subsurfac...As temperatures rise and climate change becomes an increasingly important issue, geologic carbon dioxide (CO<sub>2</sub>) sequestration is a viable solution for reducing greenhouse gas emissions. Subsurface 3-D modeling and groundwater flow modeling were completed as a component of a CO<sub>2</sub> sequestration feasibility study in the city of Decatur, Illinois. The Decatur Archer Daniels Midland Company Ethanol Plant (ADM) serves as the injection site for a CO<sub>2</sub> sequestration project within a deep saline reservoir. Petrel was successfully used to model the glacial deposits in the area. The 3-D geologic model shows the Peoria Silt, Wedron Formation, and Cahokia Formation at the surface with the Wedron Formation holding up the steep slopes along the east and west banks of Lake Decatur. The groundwater flow model outlined the location of a local groundwater divide and showed flow from the injection site would flow towards Lake Decatur, reaching the lake in 80 days.展开更多
Sediment size governs advection, controlling the hydraulic conductivity of the stratum, and conduction, influencing the amount of surface area in contact between the sediment particles. To understand the role of sedim...Sediment size governs advection, controlling the hydraulic conductivity of the stratum, and conduction, influencing the amount of surface area in contact between the sediment particles. To understand the role of sediment particle size on thermal profiles within the hyporheic zone, a statistical approach, involving general summary statistics and time series cross-correlation, was employed. Data were collected along two riffles: Site 1: gravel (d50 = 3.9 mm) and Site 2: sand (d50 =0.94 mm).Temperature probe grids collected 15-minute temperature data at 30, 60, 90, and140cm below the streambed surface over a 6 month period. Surface water and air temperature were recorded. Diel temperature signal penetration depth was limited to the upper 30cm of the streambed and was driven by advection. Surface seasonal trends were detected at greater depths, indicating that thermal pulses are transmitted initially by advection and by conduction to areas deeper in the hyporheic zone. Site 1 showed a high degree of thermal heterogeneity via a localized downwelling zone within a gaining stream environment. Site 2 exhibited a vertically and horizontally homogenized thermal environment attributed to an increased amount of sand sediments that limited advection and significant groundwater discharge that mediated the effects of downwelling surface water.展开更多
When evaluating hyporheic exchange in a flowing stream, it is inappropriate to directly compare stream stage with subsurface hydraulic head (h) to determine direction and magnitude of the gradient between the stream a...When evaluating hyporheic exchange in a flowing stream, it is inappropriate to directly compare stream stage with subsurface hydraulic head (h) to determine direction and magnitude of the gradient between the stream and the subsurface. In the case of moving water, it is invalid to ignore velocity and to assume that stage equals the net downward pressure on the streambed.? The Bernoulli equation describes the distribution of energy within flowing fluids and implies that net pressure decreases as a function of velocity, i.e., the Venturi Effect, which sufficiently reduces the pressure on the streambed to create the appearance of a downward gradient when in fact the gradient may be upward with stream flow drawing water from the subsurface to the surface. A field study correlating the difference between subsurface head and stream stage in a low-gradient stream indicates that the effect is present and significant: shallow subsurface head increases less quickly than stage while deeper subsurface head increases more quickly. These results can substantially improve conceptual models and simulations of hyporheic flow.展开更多
Separate sanitary sewer systems are designed to convey sewage waste from municipal areas to a central treatment facility;they are not designed to handle water associated with precipitation events. However, intercept o...Separate sanitary sewer systems are designed to convey sewage waste from municipal areas to a central treatment facility;they are not designed to handle water associated with precipitation events. However, intercept of groundwater (infiltration) and of flows through manholes or unauthorized connections (inflows) introduces rainwater into the sanitary sewer system. Infiltration/Inflow (I/I) increases the costs associated with treatment and can create additional environmental problems. Identifying and quantifying the volume I/I can be complicated and costly. A simple quantitative method was developed to quantify the extent of I/I occurring in sewer sheds. The method uses measured sewer flows, water usage, precipitation values, and land cover data to calculate the volume of extraneous flows. To assess its utility, the method was used to compare two urban sewer sheds, Holiday Knolls and Eagle View. Both sewer sheds showed evidence of I/I in excess of 200 gallons per day per inch-mile of sewer pipe (gpd/in-mile). Holiday Knolls, the older subdivision had an average I/I of 1912 gpd/in-mile, while Eagle View had an average of 1143 gpd/in-mile. The devel- oped method provided simple means to calculate I/I and to identify sewer sheds in need of repair.展开更多
The Troy Bedrock Valley (TBV) and its tributary valleys are the principal pre-glacial drainage in southern Wisconsin and northern Illinois, USA. This study focused on the headwaters of a tributary that occurs in McHen...The Troy Bedrock Valley (TBV) and its tributary valleys are the principal pre-glacial drainage in southern Wisconsin and northern Illinois, USA. This study focused on the headwaters of a tributary that occurs in McHenry County, IL. Drilling, geophysical surveys, and the analysis of existing geologic and water well data were used to determine the lithologic and geometric characteristics of the sediments that fill the paleovalley. A 3D geologic model of these sediments was then developed in Petrel. More than 65 m of Quaternary sediments filled the paleovalley. The model domain covers approximately 30 km<sup>2</sup>. The valley drains to the west and meanders, which is distinct from the straight course of the overlying modern Kishwaukee River. The sediments that filled the valley were subdivided into five units. These units include Illinois-age Glasford Formation coarse-grained proglacial outwash and alluvial deposits (GS2, GS1) and fine-grained lacustrine and diamicton deposits (G2 and G1). The Wisconsin-age Henry Formation sand and gravel cap the valley fill, and Cahokia alluvium buries everything.展开更多
文摘Within McHenry County, IL, the fastest growing county in Illinois, groundwater is used for 100% of the water needs. Concerns over water resources have prompted the investigation of the surficial sand and gravel aquifers of the county. While the eastern portion of the county is urbanizing, the western portion remains devoted to agriculture. High-capacity irrigation wells screened within the surficial sand and gravel aquifer are used for crop production. To assess the impacts of the irrigation wells on the aquifer, a groundwater flow model was developed to examine five different scenarios reflecting drought conditions and increased pumping. Results show that the surficial sand and gravel aquifer is capable of meeting current water demands even if recharge is decreased 20% and pumping is increased 20%. The additional loss of discharge and increases in pumping result in head differences throughout the aquifer.
文摘As temperatures rise and climate change becomes an increasingly important issue, geologic carbon dioxide (CO<sub>2</sub>) sequestration is a viable solution for reducing greenhouse gas emissions. Subsurface 3-D modeling and groundwater flow modeling were completed as a component of a CO<sub>2</sub> sequestration feasibility study in the city of Decatur, Illinois. The Decatur Archer Daniels Midland Company Ethanol Plant (ADM) serves as the injection site for a CO<sub>2</sub> sequestration project within a deep saline reservoir. Petrel was successfully used to model the glacial deposits in the area. The 3-D geologic model shows the Peoria Silt, Wedron Formation, and Cahokia Formation at the surface with the Wedron Formation holding up the steep slopes along the east and west banks of Lake Decatur. The groundwater flow model outlined the location of a local groundwater divide and showed flow from the injection site would flow towards Lake Decatur, reaching the lake in 80 days.
文摘Sediment size governs advection, controlling the hydraulic conductivity of the stratum, and conduction, influencing the amount of surface area in contact between the sediment particles. To understand the role of sediment particle size on thermal profiles within the hyporheic zone, a statistical approach, involving general summary statistics and time series cross-correlation, was employed. Data were collected along two riffles: Site 1: gravel (d50 = 3.9 mm) and Site 2: sand (d50 =0.94 mm).Temperature probe grids collected 15-minute temperature data at 30, 60, 90, and140cm below the streambed surface over a 6 month period. Surface water and air temperature were recorded. Diel temperature signal penetration depth was limited to the upper 30cm of the streambed and was driven by advection. Surface seasonal trends were detected at greater depths, indicating that thermal pulses are transmitted initially by advection and by conduction to areas deeper in the hyporheic zone. Site 1 showed a high degree of thermal heterogeneity via a localized downwelling zone within a gaining stream environment. Site 2 exhibited a vertically and horizontally homogenized thermal environment attributed to an increased amount of sand sediments that limited advection and significant groundwater discharge that mediated the effects of downwelling surface water.
文摘When evaluating hyporheic exchange in a flowing stream, it is inappropriate to directly compare stream stage with subsurface hydraulic head (h) to determine direction and magnitude of the gradient between the stream and the subsurface. In the case of moving water, it is invalid to ignore velocity and to assume that stage equals the net downward pressure on the streambed.? The Bernoulli equation describes the distribution of energy within flowing fluids and implies that net pressure decreases as a function of velocity, i.e., the Venturi Effect, which sufficiently reduces the pressure on the streambed to create the appearance of a downward gradient when in fact the gradient may be upward with stream flow drawing water from the subsurface to the surface. A field study correlating the difference between subsurface head and stream stage in a low-gradient stream indicates that the effect is present and significant: shallow subsurface head increases less quickly than stage while deeper subsurface head increases more quickly. These results can substantially improve conceptual models and simulations of hyporheic flow.
文摘Separate sanitary sewer systems are designed to convey sewage waste from municipal areas to a central treatment facility;they are not designed to handle water associated with precipitation events. However, intercept of groundwater (infiltration) and of flows through manholes or unauthorized connections (inflows) introduces rainwater into the sanitary sewer system. Infiltration/Inflow (I/I) increases the costs associated with treatment and can create additional environmental problems. Identifying and quantifying the volume I/I can be complicated and costly. A simple quantitative method was developed to quantify the extent of I/I occurring in sewer sheds. The method uses measured sewer flows, water usage, precipitation values, and land cover data to calculate the volume of extraneous flows. To assess its utility, the method was used to compare two urban sewer sheds, Holiday Knolls and Eagle View. Both sewer sheds showed evidence of I/I in excess of 200 gallons per day per inch-mile of sewer pipe (gpd/in-mile). Holiday Knolls, the older subdivision had an average I/I of 1912 gpd/in-mile, while Eagle View had an average of 1143 gpd/in-mile. The devel- oped method provided simple means to calculate I/I and to identify sewer sheds in need of repair.
文摘The Troy Bedrock Valley (TBV) and its tributary valleys are the principal pre-glacial drainage in southern Wisconsin and northern Illinois, USA. This study focused on the headwaters of a tributary that occurs in McHenry County, IL. Drilling, geophysical surveys, and the analysis of existing geologic and water well data were used to determine the lithologic and geometric characteristics of the sediments that fill the paleovalley. A 3D geologic model of these sediments was then developed in Petrel. More than 65 m of Quaternary sediments filled the paleovalley. The model domain covers approximately 30 km<sup>2</sup>. The valley drains to the west and meanders, which is distinct from the straight course of the overlying modern Kishwaukee River. The sediments that filled the valley were subdivided into five units. These units include Illinois-age Glasford Formation coarse-grained proglacial outwash and alluvial deposits (GS2, GS1) and fine-grained lacustrine and diamicton deposits (G2 and G1). The Wisconsin-age Henry Formation sand and gravel cap the valley fill, and Cahokia alluvium buries everything.