Recently,computation offloading has become an effective method for overcoming the constraint of a mobile device(MD)using computationintensivemobile and offloading delay-sensitive application tasks to the remote cloud-...Recently,computation offloading has become an effective method for overcoming the constraint of a mobile device(MD)using computationintensivemobile and offloading delay-sensitive application tasks to the remote cloud-based data center.Smart city benefitted from offloading to edge point.Consider a mobile edge computing(MEC)network in multiple regions.They comprise N MDs and many access points,in which everyMDhasM independent real-time tasks.This study designs a new Task Offloading and Resource Allocation in IoT-based MEC using Deep Learning with Seagull Optimization(TORA-DLSGO)algorithm.The proposed TORA-DLSGO technique addresses the resource management issue in the MEC server,which enables an optimum offloading decision to minimize the system cost.In addition,an objective function is derived based on minimizing energy consumption subject to the latency requirements and restricted resources.The TORA-DLSGO technique uses the deep belief network(DBN)model for optimum offloading decision-making.Finally,the SGO algorithm is used for the parameter tuning of the DBN model.The simulation results exemplify that the TORA-DLSGO technique outperformed the existing model in reducing client overhead in the MEC systems with a maximum reward of 0.8967.展开更多
Melanoma is a skin disease with high mortality rate while earlydiagnoses of the disease can increase the survival chances of patients. Itis challenging to automatically diagnose melanoma from dermoscopic skinsamples. ...Melanoma is a skin disease with high mortality rate while earlydiagnoses of the disease can increase the survival chances of patients. Itis challenging to automatically diagnose melanoma from dermoscopic skinsamples. Computer-Aided Diagnostic (CAD) tool saves time and effort indiagnosing melanoma compared to existing medical approaches. In this background,there is a need exists to design an automated classification modelfor melanoma that can utilize deep and rich feature datasets of an imagefor disease classification. The current study develops an Intelligent ArithmeticOptimization with Ensemble Deep Transfer Learning Based MelanomaClassification (IAOEDTT-MC) model. The proposed IAOEDTT-MC modelfocuses on identification and classification of melanoma from dermoscopicimages. To accomplish this, IAOEDTT-MC model applies image preprocessingat the initial stage in which Gabor Filtering (GF) technique is utilized.In addition, U-Net segmentation approach is employed to segment the lesionregions in dermoscopic images. Besides, an ensemble of DL models includingResNet50 and ElasticNet models is applied in this study. Moreover, AOalgorithm with Gated Recurrent Unit (GRU) method is utilized for identificationand classification of melanoma. The proposed IAOEDTT-MC methodwas experimentally validated with the help of benchmark datasets and theproposed model attained maximum accuracy of 92.09% on ISIC 2017 dataset.展开更多
Recently,there has been a considerable rise in the number of diabetic patients suffering from diabetic retinopathy(DR).DR is one of the most chronic diseases and makes the key cause of vision loss in middle-aged peopl...Recently,there has been a considerable rise in the number of diabetic patients suffering from diabetic retinopathy(DR).DR is one of the most chronic diseases and makes the key cause of vision loss in middle-aged people in the developed world.Initial detection of DR becomes necessary for decreasing the disease severity by making use of retinal fundus images.This article introduces a Deep Learning Enabled Large Scale Healthcare Decision Making for Diabetic Retinopathy(DLLSHDM-DR)on Retinal Fundus Images.The proposed DLLSHDM-DR technique intends to assist physicians with the DR decision-making method.In the DLLSHDM-DR technique,image preprocessing is initially performed to improve the quality of the fundus image.Besides,the DLLSHDM-DR applies HybridNet for producing a collection of feature vectors.For retinal image classification,the DLLSHDM-DR technique exploits the Emperor Penguin Optimizer(EPO)with a Deep Recurrent Neural Network(DRNN).The application of the EPO algorithm assists in the optimal adjustment of the hyperparameters related to the DRNN model for DR detection showing the novelty of our work.To assuring the improved performance of the DLLSHDMDR model,a wide range of experiments was tested on the EyePACS dataset.The comparison outcomes assured the better performance of the DLLSHDM-DR approach over other DL models.展开更多
Hyperspectral imaging instruments could capture detailed spatial information and rich spectral signs of observed scenes.Much spatial information and spectral signatures of hyperspectral images(HSIs)present greater pot...Hyperspectral imaging instruments could capture detailed spatial information and rich spectral signs of observed scenes.Much spatial information and spectral signatures of hyperspectral images(HSIs)present greater potential for detecting and classifying fine crops.The accurate classification of crop kinds utilizing hyperspectral remote sensing imaging(RSI)has become an indispensable application in the agricultural domain.It is significant for the prediction and growth monitoring of crop yields.Amongst the deep learning(DL)techniques,Convolution Neural Network(CNN)was the best method for classifying HSI for their incredible local contextual modeling ability,enabling spectral and spatial feature extraction.This article designs a Hybrid Multi-Strategy Aquila Optimization with a Deep Learning-Driven Crop Type Classification(HMAODL-CTC)algorithm onHSI.The proposed HMAODL-CTC model mainly intends to categorize different types of crops on HSI.To accomplish this,the presented HMAODL-CTC model initially carries out image preprocessing to improve image quality.In addition,the presented HMAODL-CTC model develops dilated convolutional neural network(CNN)for feature extraction.For hyperparameter tuning of the dilated CNN model,the HMAO algorithm is utilized.Eventually,the presented HMAODL-CTC model uses an extreme learning machine(ELM)model for crop type classification.A comprehensive set of simulations were performed to illustrate the enhanced performance of the presented HMAODL-CTC algorithm.Extensive comparison studies reported the improved performance of the presented HMAODL-CTC algorithm over other compared methods.展开更多
Cyberattacks are developing gradually sophisticated,requiring effective intrusion detection systems(IDSs)for monitoring computer resources and creating reports on anomalous or suspicious actions.With the popularity of...Cyberattacks are developing gradually sophisticated,requiring effective intrusion detection systems(IDSs)for monitoring computer resources and creating reports on anomalous or suspicious actions.With the popularity of Internet of Things(IoT)technology,the security of IoT networks is developing a vital problem.Because of the huge number and varied kinds of IoT devices,it can be challenging task for protecting the IoT framework utilizing a typical IDS.The typical IDSs have their restrictions once executed to IoT networks because of resource constraints and complexity.Therefore,this paper presents a new Blockchain Assisted Intrusion Detection System using Differential Flower Pollination with Deep Learning(BAIDS-DFPDL)model in IoT Environment.The presented BAIDS-DFPDLmodelmainly focuses on the identification and classification of intrusions in the IoT environment.To accomplish this,the presented BAIDS-DFPDL model follows blockchain(BC)technology for effective and secure data transmission among the agents.Besides,the presented BAIDSDFPDLmodel designs Differential Flower Pollination based feature selection(DFPFS)technique to elect features.Finally,sailfish optimization(SFO)with Restricted Boltzmann Machine(RBM)model is applied for effectual recognition of intrusions.The simulation results on benchmark dataset exhibit the enhanced performance of the BAIDS-DFPDL model over other models on the recognition of intrusions.展开更多
Histopathology is the investigation of tissues to identify the symptom of abnormality.The histopathological procedure comprises gathering samples of cells/tissues,setting them on the microscopic slides,and staining th...Histopathology is the investigation of tissues to identify the symptom of abnormality.The histopathological procedure comprises gathering samples of cells/tissues,setting them on the microscopic slides,and staining them.The investigation of the histopathological image is a problematic and laborious process that necessitates the expert’s knowledge.At the same time,deep learning(DL)techniques are able to derive features,extract data,and learn advanced abstract data representation.With this view,this paper presents an ensemble of handcrafted with deep learning enabled histopathological image classification(EHCDL-HIC)model.The proposed EHCDLHIC technique initially performs Weiner filtering based noise removal technique.Once the images get smoothened,an ensemble of deep features and local binary pattern(LBP)features are extracted.For the classification process,the bidirectional gated recurrent unit(BGRU)model can be employed.At the final stage,the bacterial foraging optimization(BFO)algorithm is utilized for optimal hyperparameter tuning process which leads to improved classification performance,shows the novelty of the work.For validating the enhanced execution of the proposed EHCDL-HIC method,a set of simulations is performed.The experimentation outcomes highlighted the betterment of the EHCDL-HIC approach over the existing techniques with maximum accuracy of 94.78%.Therefore,the EHCDL-HIC model can be applied as an effective approach for histopathological image classification.展开更多
基金supported by the Technology Development Program of MSS(No.S3033853).
文摘Recently,computation offloading has become an effective method for overcoming the constraint of a mobile device(MD)using computationintensivemobile and offloading delay-sensitive application tasks to the remote cloud-based data center.Smart city benefitted from offloading to edge point.Consider a mobile edge computing(MEC)network in multiple regions.They comprise N MDs and many access points,in which everyMDhasM independent real-time tasks.This study designs a new Task Offloading and Resource Allocation in IoT-based MEC using Deep Learning with Seagull Optimization(TORA-DLSGO)algorithm.The proposed TORA-DLSGO technique addresses the resource management issue in the MEC server,which enables an optimum offloading decision to minimize the system cost.In addition,an objective function is derived based on minimizing energy consumption subject to the latency requirements and restricted resources.The TORA-DLSGO technique uses the deep belief network(DBN)model for optimum offloading decision-making.Finally,the SGO algorithm is used for the parameter tuning of the DBN model.The simulation results exemplify that the TORA-DLSGO technique outperformed the existing model in reducing client overhead in the MEC systems with a maximum reward of 0.8967.
基金supported by the MSIT (Ministry of Science and ICT),Korea,under the ICAN (ICT Challenge and Advanced Network of HRD)program (IITP-2022-2020-0-01832)supervised by the IITP (Institute of Information&Communications Technology Planning&Evaluation)and the Soonchunhyang University Research Fund.
文摘Melanoma is a skin disease with high mortality rate while earlydiagnoses of the disease can increase the survival chances of patients. Itis challenging to automatically diagnose melanoma from dermoscopic skinsamples. Computer-Aided Diagnostic (CAD) tool saves time and effort indiagnosing melanoma compared to existing medical approaches. In this background,there is a need exists to design an automated classification modelfor melanoma that can utilize deep and rich feature datasets of an imagefor disease classification. The current study develops an Intelligent ArithmeticOptimization with Ensemble Deep Transfer Learning Based MelanomaClassification (IAOEDTT-MC) model. The proposed IAOEDTT-MC modelfocuses on identification and classification of melanoma from dermoscopicimages. To accomplish this, IAOEDTT-MC model applies image preprocessingat the initial stage in which Gabor Filtering (GF) technique is utilized.In addition, U-Net segmentation approach is employed to segment the lesionregions in dermoscopic images. Besides, an ensemble of DL models includingResNet50 and ElasticNet models is applied in this study. Moreover, AOalgorithm with Gated Recurrent Unit (GRU) method is utilized for identificationand classification of melanoma. The proposed IAOEDTT-MC methodwas experimentally validated with the help of benchmark datasets and theproposed model attained maximum accuracy of 92.09% on ISIC 2017 dataset.
基金The Deanship of Scientific Research(DSR)at King Abdulaziz University(KAU),Jeddah,Saudi Arabia has funded this project,under grant no KEP-4-120-42.
文摘Recently,there has been a considerable rise in the number of diabetic patients suffering from diabetic retinopathy(DR).DR is one of the most chronic diseases and makes the key cause of vision loss in middle-aged people in the developed world.Initial detection of DR becomes necessary for decreasing the disease severity by making use of retinal fundus images.This article introduces a Deep Learning Enabled Large Scale Healthcare Decision Making for Diabetic Retinopathy(DLLSHDM-DR)on Retinal Fundus Images.The proposed DLLSHDM-DR technique intends to assist physicians with the DR decision-making method.In the DLLSHDM-DR technique,image preprocessing is initially performed to improve the quality of the fundus image.Besides,the DLLSHDM-DR applies HybridNet for producing a collection of feature vectors.For retinal image classification,the DLLSHDM-DR technique exploits the Emperor Penguin Optimizer(EPO)with a Deep Recurrent Neural Network(DRNN).The application of the EPO algorithm assists in the optimal adjustment of the hyperparameters related to the DRNN model for DR detection showing the novelty of our work.To assuring the improved performance of the DLLSHDMDR model,a wide range of experiments was tested on the EyePACS dataset.The comparison outcomes assured the better performance of the DLLSHDM-DR approach over other DL models.
基金This work was supported by Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2023R384)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘Hyperspectral imaging instruments could capture detailed spatial information and rich spectral signs of observed scenes.Much spatial information and spectral signatures of hyperspectral images(HSIs)present greater potential for detecting and classifying fine crops.The accurate classification of crop kinds utilizing hyperspectral remote sensing imaging(RSI)has become an indispensable application in the agricultural domain.It is significant for the prediction and growth monitoring of crop yields.Amongst the deep learning(DL)techniques,Convolution Neural Network(CNN)was the best method for classifying HSI for their incredible local contextual modeling ability,enabling spectral and spatial feature extraction.This article designs a Hybrid Multi-Strategy Aquila Optimization with a Deep Learning-Driven Crop Type Classification(HMAODL-CTC)algorithm onHSI.The proposed HMAODL-CTC model mainly intends to categorize different types of crops on HSI.To accomplish this,the presented HMAODL-CTC model initially carries out image preprocessing to improve image quality.In addition,the presented HMAODL-CTC model develops dilated convolutional neural network(CNN)for feature extraction.For hyperparameter tuning of the dilated CNN model,the HMAO algorithm is utilized.Eventually,the presented HMAODL-CTC model uses an extreme learning machine(ELM)model for crop type classification.A comprehensive set of simulations were performed to illustrate the enhanced performance of the presented HMAODL-CTC algorithm.Extensive comparison studies reported the improved performance of the presented HMAODL-CTC algorithm over other compared methods.
基金This research was supported in part by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(NRF-2021R1A6A1A03039493)in part by the NRF grant funded by the Korea government(MSIT)(NRF-2022R1A2C1004401)in part by the 2022 Yeungnam University Research Grant.
文摘Cyberattacks are developing gradually sophisticated,requiring effective intrusion detection systems(IDSs)for monitoring computer resources and creating reports on anomalous or suspicious actions.With the popularity of Internet of Things(IoT)technology,the security of IoT networks is developing a vital problem.Because of the huge number and varied kinds of IoT devices,it can be challenging task for protecting the IoT framework utilizing a typical IDS.The typical IDSs have their restrictions once executed to IoT networks because of resource constraints and complexity.Therefore,this paper presents a new Blockchain Assisted Intrusion Detection System using Differential Flower Pollination with Deep Learning(BAIDS-DFPDL)model in IoT Environment.The presented BAIDS-DFPDLmodelmainly focuses on the identification and classification of intrusions in the IoT environment.To accomplish this,the presented BAIDS-DFPDL model follows blockchain(BC)technology for effective and secure data transmission among the agents.Besides,the presented BAIDSDFPDLmodel designs Differential Flower Pollination based feature selection(DFPFS)technique to elect features.Finally,sailfish optimization(SFO)with Restricted Boltzmann Machine(RBM)model is applied for effectual recognition of intrusions.The simulation results on benchmark dataset exhibit the enhanced performance of the BAIDS-DFPDL model over other models on the recognition of intrusions.
文摘Histopathology is the investigation of tissues to identify the symptom of abnormality.The histopathological procedure comprises gathering samples of cells/tissues,setting them on the microscopic slides,and staining them.The investigation of the histopathological image is a problematic and laborious process that necessitates the expert’s knowledge.At the same time,deep learning(DL)techniques are able to derive features,extract data,and learn advanced abstract data representation.With this view,this paper presents an ensemble of handcrafted with deep learning enabled histopathological image classification(EHCDL-HIC)model.The proposed EHCDLHIC technique initially performs Weiner filtering based noise removal technique.Once the images get smoothened,an ensemble of deep features and local binary pattern(LBP)features are extracted.For the classification process,the bidirectional gated recurrent unit(BGRU)model can be employed.At the final stage,the bacterial foraging optimization(BFO)algorithm is utilized for optimal hyperparameter tuning process which leads to improved classification performance,shows the novelty of the work.For validating the enhanced execution of the proposed EHCDL-HIC method,a set of simulations is performed.The experimentation outcomes highlighted the betterment of the EHCDL-HIC approach over the existing techniques with maximum accuracy of 94.78%.Therefore,the EHCDL-HIC model can be applied as an effective approach for histopathological image classification.