期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Composition and origin of lipid biomarkers in the surface sediments from the southern Challenger Deep, Mariana Trench 被引量:3
1
作者 Hongxiang Guan Linying chen +6 位作者 Min Luo Lihua Liu Shengyi Mao Huangmin Ge Mei Zhang Jiasong Fang duofu chen 《Geoscience Frontiers》 SCIE CAS CSCD 2019年第1期351-360,共10页
The surface sediments collected from the southern Mariana Trench at water depths between ca.4900 m and 7068 m were studied using lipid biomarker analyses to reveal the origin and distribution of organic matters. For a... The surface sediments collected from the southern Mariana Trench at water depths between ca.4900 m and 7068 m were studied using lipid biomarker analyses to reveal the origin and distribution of organic matters. For all samples, an unresolved complex mixture(UCM) was present in the hydrocarbon fractions, wherein resistant component tricyclic terpanes were detected but C_(27)-C _(29) regular steranes and hopanes indicative of a higher molecular weight range of petroleum were almost absent.This biomarker distribution patterns suggested that the UCM and tricyclic terpanes may be introduced by contamination of diesel fuels or shipping activities and oil seepage elsewhere. The well-developed faults and strike-slip faults in the Mariana subduction zone may serve as passages for the petroleum hydrocarbons. In addition, the relative high contents of even n-alkanes and low Carbon Preference Indices indicated that the n-alkanes were mainly derived from bacteria or algae. For GDGTs, the predominance of GDGT-0 and crenarchaeol, together with low GDGT-0/Crenarchaeol ratios(ranging from0.86 to 1.64), suggests that the GDGTs in samples from the southern Mariana Trench were mainly derived from planktic Thaumarchaeota. However, the high GDGT-0/crenarchaeol ratio(10.5) in sample BC07 suggests that the GDGTs probably were introduced by methanogens in a more anoxic environment. Furthermore, the n-alkanes C_(19)-C_(22) and the n-fatty acids C_(20:0)-C_(22:0) were depleted in^(13)C by 3‰ compared to n-alkanes C_(16)-C_(18) and the n-fatty acids C_(14:0)-C_(18:0), respectively, which was interpreted to result from the preferential reaction of fatty acid fragments with carbon "lighter" terminal carboxyl groups during carbon chain elongation from the precursors to products. The abundance of total alkanes, carboxylic acids, alcohols and total lipids were generally increased along the down-going seaward plate, suggesting the lateral organic matter inputs play an important role in organic matter accumulation in hadal trenches. The extremely high contents of biomarkers in sample BC11 were most likely related to trench topography and current dynamics, since the lower steepness caused by graben texture and proximity to the trench axis may result in higher sedimentation rate. This paper, for the first time, showed the biomarker patterns in surface sediments of the Mariana Trench and shed light on biogeochemistry of the hardly reached trench environment. 展开更多
关键词 MARIANA TRENCH LIPID biomarkers Organic matter TOPOGRAPHY Hydrodynamics
在线阅读 下载PDF
The crucial role of deep-sourced methane in maintaining the subseafloor sulfate budget 被引量:1
2
作者 Yu Hu Dong Feng +5 位作者 Jörn Peckmann Xinxin Zhang Linying chen Junxi Feng Hongbin Wang duofu chen 《Geoscience Frontiers》 SCIE CAS CSCD 2023年第3期45-53,共9页
Methane(CH4)is a powerful greenhouse gas and its largest reservoir on Earth is held in marine sediments.CH4 in marine sediments is mainly stored in gas-hydrate reservoirs and deep sedimentary strata along continental ... Methane(CH4)is a powerful greenhouse gas and its largest reservoir on Earth is held in marine sediments.CH4 in marine sediments is mainly stored in gas-hydrate reservoirs and deep sedimentary strata along continental margins,where large amounts of deep-sourced CH4 ascend to different degrees toward the seafloor.However,the amount of deep-sourced CH4 and its role in subseafloor carbon and sulfur cycling remains poorly constrained.We analyzed sulfate(SO_(4)^(2-))profiles of 157 sites along with previous published 85 sites to determine the regional distribution and amount of SO_(4)^(2-) reduction for an area of 1.23×10^(5) km^(2) of the northern South China Sea.Then we compared these obtained results with estimates based on sedimentation rates from the same area.Significantly higher regional SO_(4)^(2-) flux estimates based on SO_(4)^(2-) profiles(4.26×10^(-3)Tmol a^(-1)),compared to lower estimates based on sedimentation rates(1.23×10^(-3)Tmol a^(-1)),reflect abundant ascending deep-sourced CH4.The difference of the regional SO_(4)^(2-) flux estimates(3.03×10^(-3)Tmol a^(-1))represents the amount of SO_(4)^(2-) reduced by CH_(4) through the anaerobic oxidation of CH_(4)(AOM).Deep-sourced CH_(4) contributes 71%to total SO_(4)^(2-) consumption in the study area,largely exceeding SO_(4)^(2-) consumption by organoclastic sulfate reduction.Our findings substantiate that deep-sourced CH4 governs subseafloor carbon and sulfur cycling to a previously underrated extent,fueling extensive chemosynthesis-based ecosystems along continental slope and rise. 展开更多
关键词 Deep-sourced methane Sulfate reduction Anaerobic oxidation of methane Sulfate profiles South China Sea
原文传递
Enhanced sulfate consumption fueled by deep-sourced methane in a hydrate-bearing area
3
作者 Yu Hu Xinxin Zhang +5 位作者 Dong Feng Jörn Peckmann Junxi Feng Hongbin Wang Shengxiong Yang duofu chen 《Science Bulletin》 SCIE EI CSCD 2022年第2期122-124,M0003,共4页
量化天然气水合物富集区海底硫酸盐还原速率和甲烷氧化速率对了解海洋碳、硫循环至关重要.以南海北部神狐海域为例,基于实测的大面积(达5.2 10^(11)km^(2))、多站位(85个)海底表层沉积物硫酸盐浓度剖面,我们获得的区域硫酸盐还原速率为5... 量化天然气水合物富集区海底硫酸盐还原速率和甲烷氧化速率对了解海洋碳、硫循环至关重要.以南海北部神狐海域为例,基于实测的大面积(达5.2 10^(11)km^(2))、多站位(85个)海底表层沉积物硫酸盐浓度剖面,我们获得的区域硫酸盐还原速率为5.39 10^(11)mmol a^(-1).该值明显高于前人利用沉积速率估算的区域硫酸盐还原速率(3.52 10^(11)mmol a^(-1)).有意思的是,两种不同方法获得的区域硫酸盐还原速率的差值(1.87 10^(11)mmol a^(-1))恰好能限定来自深部地层中的甲烷通量大小.据此,我们认为以往海底表层沉积环境区域、乃至全球的硫酸盐还原速率可能被较大程度低估.研究同时突显了海底水合物和甲烷渗漏区表层硫酸盐消耗的甲烷相当一部分来自深部地层,而非原地有机质产甲烷形成.今后在进行精确评估全球海底硫酸盐还原和甲烷氧化速率以及水合物资源环境效应时须充分考虑海底深部甲烷的贡献. 展开更多
关键词 天然气水合物 硫酸盐浓度 硫酸盐还原 神狐海域 沉积速率 深部地层 硫循环 甲烷通量
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部