The length of fexible manipulators with a telescopic arm alters during movement.The dynamic parameters of telescopic fexible manipulators exhibit signifcant time-varying characteristics owing to variations in length.W...The length of fexible manipulators with a telescopic arm alters during movement.The dynamic parameters of telescopic fexible manipulators exhibit signifcant time-varying characteristics owing to variations in length.With an increase in the manipulators’length,the nonlinear terms caused by fexibility in the manipulators’dynamic equations cannot be ignored.The time-varying characteristics and nonlinear terms of telescopic fexible manipulators cause fuctuations in rotation angles,which afect the operation accuracy of end-efectors.In this study,a control strategy based on a combination of fuzzy adjustment and an RBF neural network is utilized to improve the control accuracy of fexible telescopic manipulators.First,the dynamic equation of the manipulators is established using the assumed mode method and Lagrange’s principle,and the infuence of nonlinear terms is analyzed.Subsequently,a combined control strategy is proposed to suppress the fuctuation of the rotation angle in telescopic fexible manipulators.The variation ranges of the feedforward PD controller parameters are determined by the pole placement strategy and length of the manipulators.Fuzzy rules are utilized to adjust the controller parameters in real-time.The RBF neural network is utilized to identify and compensate the uncertain part of the dynamic model of the fexible manipulators.The uncertain part comprises time-varying parameters and nonlinear terms.Finally,numerical simulations and prototype experiments prove the efectiveness of the combined control strategy.The results prove that the proposed control strategy has a smaller standard deviation of errors.Therefore,the combined control strategy is more suitable for telescopic fexible manipulators,which can efectively improve the control accuracy of rotation angles.展开更多
In space operation,flexible manipulators and gripper mechanisms have been widely used because of light weight and flexibility.However,the vibration caused by slender structures in manipulators and the parameter pertur...In space operation,flexible manipulators and gripper mechanisms have been widely used because of light weight and flexibility.However,the vibration caused by slender structures in manipulators and the parameter perturbation caused by the uncertainty derived from grasping mass variation cannot be ignored.The existence of vibration and parameter perturbation makes the rotation control of flexible manipulators difficult,which seriously affects the operation accuracy of manipulators.What’s more,the complex dynamic coupling brings great challenges to the dynamics modeling and vibration analysis.To solve this problem,this paper takes the space flexible manipulator with an underactuated hand(SFMUH)as the research object.The dynamics model considering flexibility,multiple nonlinear elements and disturbance torque is established by the assumed modal method(AMM)and Hamilton’s principle.A dynamic modeling simplification method is proposed by analyzing the nonlinear terms.What’s more,a sliding mode control(SMC)method combined with the radial basis function(RBF)neural network compensation is proposed.Besides,the control law is designed using a saturation function in the control method to weaken the chatter phenomenon.With the help of neural networks to identify the uncertainty composition in the SFMUH,the tracking accuracy is improved.The results of ground control experiments verify the advantages of the control method for vibration suppression of the SFMUH.展开更多
Rotating Space Slender Flexible Structures(RSSFS)are extensively utilized in space operations because of their light weight,mobility,and low energy consumption.To realize the accurate space operation of the RSSFS,it i...Rotating Space Slender Flexible Structures(RSSFS)are extensively utilized in space operations because of their light weight,mobility,and low energy consumption.To realize the accurate space operation of the RSSFS,it is necessary to establish a precise mechanical model and develop a control algorithm with high precision.However,with the application of traditional control strategies,the RSSFS often suffers from the chattering phenomenon,which will aggravate structure vibration.In this paper,novel deformation description is put forward to balance modeling accuracy and computational efficiency of the RSSFS,which is better appropriate for real-time control.Besides,the Neural Network Sliding Mode Control(NNSMC)strategy modified by the hyperbolic tangent(tanh)function is put forward to compensate for modeling errors and reduce the chattering phenomenon,thereby improving the trajectory tracking accuracy of the RSSFS.Firstly,a mathematical model for the RSSFS is developed according to the novel deformation description and the vibration theory of flexible structure.Comparison of the deformation accuracy between different models proves that the novel modeling method proposed has high modeling accuracy.Next,the universal approximation property of the Radial Basis Function(RBF)neural network is put forward to determine and compensate for modeling errors,which consist of higher-order modes and the uncertainties of external disturbances.In addition,the tanh function is proposed as the reaching law in the conventional NNSMC strategy to suppress driving torque oscillation.The control law of modified NNSMC strategy and the adaptive law of weight coefficients are developed according to the Lyapunov theorem to guarantee the RSSFS stability.Finally,the simulation and physical experimental tests of the RSSFS with different control strategies are conducted.Experimental results show that the control law according to the novel deformation description and the modified NNSMC strategy can obtain accurate tracking of the rotation and reduce the vibration of the RSSFS simultaneously.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.51875092)National Key Research and Development Project of China(Grant No.2020YFB2007802)+1 种基金Natural Science Foundation of Ningxia Province(Grant No.2020AAC03279)Fundamental Research Funds for the Central Universities(Grant No.N2103025).
文摘The length of fexible manipulators with a telescopic arm alters during movement.The dynamic parameters of telescopic fexible manipulators exhibit signifcant time-varying characteristics owing to variations in length.With an increase in the manipulators’length,the nonlinear terms caused by fexibility in the manipulators’dynamic equations cannot be ignored.The time-varying characteristics and nonlinear terms of telescopic fexible manipulators cause fuctuations in rotation angles,which afect the operation accuracy of end-efectors.In this study,a control strategy based on a combination of fuzzy adjustment and an RBF neural network is utilized to improve the control accuracy of fexible telescopic manipulators.First,the dynamic equation of the manipulators is established using the assumed mode method and Lagrange’s principle,and the infuence of nonlinear terms is analyzed.Subsequently,a combined control strategy is proposed to suppress the fuctuation of the rotation angle in telescopic fexible manipulators.The variation ranges of the feedforward PD controller parameters are determined by the pole placement strategy and length of the manipulators.Fuzzy rules are utilized to adjust the controller parameters in real-time.The RBF neural network is utilized to identify and compensate the uncertain part of the dynamic model of the fexible manipulators.The uncertain part comprises time-varying parameters and nonlinear terms.Finally,numerical simulations and prototype experiments prove the efectiveness of the combined control strategy.The results prove that the proposed control strategy has a smaller standard deviation of errors.Therefore,the combined control strategy is more suitable for telescopic fexible manipulators,which can efectively improve the control accuracy of rotation angles.
基金supported by the National Natural Science Foundation of China(No.52275090)the Fundamental Research Funds for the Central Universities(No.N2103025)+1 种基金the National Key Research and Development Program of China(No.2020YFB2007802)the Applied Basic Research Program of Liaoning Province(No.2023JH2/101300159)。
文摘In space operation,flexible manipulators and gripper mechanisms have been widely used because of light weight and flexibility.However,the vibration caused by slender structures in manipulators and the parameter perturbation caused by the uncertainty derived from grasping mass variation cannot be ignored.The existence of vibration and parameter perturbation makes the rotation control of flexible manipulators difficult,which seriously affects the operation accuracy of manipulators.What’s more,the complex dynamic coupling brings great challenges to the dynamics modeling and vibration analysis.To solve this problem,this paper takes the space flexible manipulator with an underactuated hand(SFMUH)as the research object.The dynamics model considering flexibility,multiple nonlinear elements and disturbance torque is established by the assumed modal method(AMM)and Hamilton’s principle.A dynamic modeling simplification method is proposed by analyzing the nonlinear terms.What’s more,a sliding mode control(SMC)method combined with the radial basis function(RBF)neural network compensation is proposed.Besides,the control law is designed using a saturation function in the control method to weaken the chatter phenomenon.With the help of neural networks to identify the uncertainty composition in the SFMUH,the tracking accuracy is improved.The results of ground control experiments verify the advantages of the control method for vibration suppression of the SFMUH.
基金Supported by the Applied Basic Research Program of Liaoning Province,China(No.2023JH2/101300159)the National Natural Science Foundation of China(No.52275090).
文摘Rotating Space Slender Flexible Structures(RSSFS)are extensively utilized in space operations because of their light weight,mobility,and low energy consumption.To realize the accurate space operation of the RSSFS,it is necessary to establish a precise mechanical model and develop a control algorithm with high precision.However,with the application of traditional control strategies,the RSSFS often suffers from the chattering phenomenon,which will aggravate structure vibration.In this paper,novel deformation description is put forward to balance modeling accuracy and computational efficiency of the RSSFS,which is better appropriate for real-time control.Besides,the Neural Network Sliding Mode Control(NNSMC)strategy modified by the hyperbolic tangent(tanh)function is put forward to compensate for modeling errors and reduce the chattering phenomenon,thereby improving the trajectory tracking accuracy of the RSSFS.Firstly,a mathematical model for the RSSFS is developed according to the novel deformation description and the vibration theory of flexible structure.Comparison of the deformation accuracy between different models proves that the novel modeling method proposed has high modeling accuracy.Next,the universal approximation property of the Radial Basis Function(RBF)neural network is put forward to determine and compensate for modeling errors,which consist of higher-order modes and the uncertainties of external disturbances.In addition,the tanh function is proposed as the reaching law in the conventional NNSMC strategy to suppress driving torque oscillation.The control law of modified NNSMC strategy and the adaptive law of weight coefficients are developed according to the Lyapunov theorem to guarantee the RSSFS stability.Finally,the simulation and physical experimental tests of the RSSFS with different control strategies are conducted.Experimental results show that the control law according to the novel deformation description and the modified NNSMC strategy can obtain accurate tracking of the rotation and reduce the vibration of the RSSFS simultaneously.