Rapeseed (Brassica napus) is the second largest oil crop in the world. However, transformation efficiency of rapeseed still needs to be improved. To evaluate non-procedural factors (e.g. explants, section of explant, ...Rapeseed (Brassica napus) is the second largest oil crop in the world. However, transformation efficiency of rapeseed still needs to be improved. To evaluate non-procedural factors (e.g. explants, section of explant, marker genes and number of exogenous genes) effects on transformation efficiency, 6-day-old hypocotyl explants from in vitro grown seedlings were co-cultivated with Agrobacterium strain GV3101 harboring a binary vector using optimized transformation procedure. Results showed that normal maturing variety ‘Zhongshuang 6 (ZS6)’ had the highest overall capacity to produce rooted shoots among 5 common varieties and 6 early maturing varieties, with green callus induction rate 81.45% and shoot regeneration rate 21.66%. Early maturing variety 14M645 has relatively high regeneration rate (4.69%) and one of the shortest growth periods (107.54 d). Data showed that choosing neomycin phosphotransferase II gene (NPTII) as selectable marker led to the best transformation rate (17.38%). Selecting upper hypocotyl segments near cotyledon as explant provided the higest transformation efficiency, with regeneration rate of 25.59% when using NPTII as selectable marker and 22.19% for Bar. B. napus transformed with single gene showed higher transformation frequency than vectors with multiple genes,highlighting difficulty of multiple gene transformation. This work helped to further improve genetic transformation of B. napus by optimizing factors that impact transformation efficiency,and it would ultimately improve research in transgenic B. napus varieties with commercial potential.展开更多
Microcracks are common in compact bone,but their continued propagation can lead to macroscopic fractures.These microcracks cannot be visualized radiographically,necessitating alternative noninvasive methods to identif...Microcracks are common in compact bone,but their continued propagation can lead to macroscopic fractures.These microcracks cannot be visualized radiographically,necessitating alternative noninvasive methods to identify excessive microcracking and prevent fractures.In this study,terahertz time-domain spectroscopy(THz-TDS)was used to examine bone interiors near cracks resulting from loading in bovine tibia samples.Various loading configurations,such as impact,quasi-static loading,and fatigue loading,known to induce different types of micro-scale damage,were applied.The values of refractive index and absorption coefficient of the bone samples were then determined from the THz-TDS spectra acquired before loading and after fracture.The study revealed that different loading configurations led to varying terahertz optical coefficients associated with various types of bone fractures.Specifically,the refractive index notably increased under fatigue loading but remained relatively stable during quasi-static bending.The absorption coefficient of bone decreased only under fatigue loading.Furthermore,samples were subjected to axial and radial impacts without sustaining damage.Results indicated that in the undamaged state,the change in refractive index was smaller compared to after impact failure,while the change in absorption coefficient remained consistent after failure.Under radial impact loading,changes in refractive index and absorption coefficient were significantly more pronounced than under axial loading.Prior to loading,the measured value of refractive index was 2.72±0.11,and the absorption coefficient was 6.33±0.09 mm^(−1)at 0.5 THz.展开更多
With the application of strain engineering in microelectronics,complex stress states are introduced into advanced semiconductor devices.However,there is still a lack of effective metrology for the decoupling analysis ...With the application of strain engineering in microelectronics,complex stress states are introduced into advanced semiconductor devices.However,there is still a lack of effective metrology for the decoupling analysis of the complex stress states in semiconductor materials.This paper presents an investigation on the 2-axis stress component decoupling of{100}monocrystalline silicon(c-Si)by using oblique backscattering micro-Raman spectroscopy.A spectral-mechanical model was established,and two practicable methods for actual stress decoupling analyses were proposed.The verification experiments demonstrated the correctness and applicability of the methods proposed in this paper.展开更多
Long terminal repeat (LTR) retrotransposons, one of the foremost types of transposons, continually change or modify gene function and reorganize the genome through bursts of dramatic proliferation. Many LTR-TEs pref...Long terminal repeat (LTR) retrotransposons, one of the foremost types of transposons, continually change or modify gene function and reorganize the genome through bursts of dramatic proliferation. Many LTR-TEs preferen-tially insert within other LTR-TEs, but the cause and evolutionary significance of these nested LTR-TEs are not well under-stood. In this study, a total of 1.52 Gb of Brassica sequence containing 2020 bacterial artificial chromosomes (BACs) was scanned, and six bacterial artificial chromosome (BAC) clones with extremely nested LTR-TEs (LTR-TEs density: 7.24/kb) were selected for further analysis. The majority of the LTR-TEs in four of the six BACs were found to be derived from the rapid proliferation of retrotransposons originating within the BAC regions, with only a few LTR-TEs originating from the proliferation and insertion of retrotransposons from outside the BAC regions approximately 5-23 Mya. LTR-TEs also pref-erably inserted into TA-rich repeat regions. Gene prediction by Genescan identified 207 genes in the 0.84Mb of total BAC sequences. Only a few genes (3/207) could be matched to the Brassica expressed sequence tag (EST) database, indicating that most genes were inactive after retrotransposon insertion. Five of the six BACs were putatively centromeric. Hence, nested LTR-TEs in centromere regions are rapidly duplicated, repeatedly inserted, and act to suppress activity of genes and to reshuffle the structure of the centromeric sequences. Our results suggest that LTR-TEs burst and proliferate on a local scale to create nested LTR-TE regions, and that these nested LTR-TEs play a role in the formation of centromeres.展开更多
Soft material is becoming increasingly important to many industries, which leads to the demand for a better understanding of its mechanical properties under large deformation. In this paper, a technique of integrating...Soft material is becoming increasingly important to many industries, which leads to the demand for a better understanding of its mechanical properties under large deformation. In this paper, a technique of integrating the digital moire method and embedded-grating approach is presented for investigating mechanical behaviors of a vulcanized silicone rubber in contact with a wedge-shaped indenter. Two distinct deformation sectors are observed from the experimental result. A simple way of computing strain is also presented by analysing grid deformation within the framework of geometrical nonlinearity. Three regions were observed from strain distribution along the horizontal direction: the contact region, the sink-in region and the far-field region. Moreover, the extent of the sticky region and that of the slippy region within the contact interface are distinguished, which can provide realistic data for theoretical modelling. Based on the finite deformation elasticity theory, the distribution of contact pressure and shear stress over the contact interface are derived for prediction of possible cracks.展开更多
文摘Rapeseed (Brassica napus) is the second largest oil crop in the world. However, transformation efficiency of rapeseed still needs to be improved. To evaluate non-procedural factors (e.g. explants, section of explant, marker genes and number of exogenous genes) effects on transformation efficiency, 6-day-old hypocotyl explants from in vitro grown seedlings were co-cultivated with Agrobacterium strain GV3101 harboring a binary vector using optimized transformation procedure. Results showed that normal maturing variety ‘Zhongshuang 6 (ZS6)’ had the highest overall capacity to produce rooted shoots among 5 common varieties and 6 early maturing varieties, with green callus induction rate 81.45% and shoot regeneration rate 21.66%. Early maturing variety 14M645 has relatively high regeneration rate (4.69%) and one of the shortest growth periods (107.54 d). Data showed that choosing neomycin phosphotransferase II gene (NPTII) as selectable marker led to the best transformation rate (17.38%). Selecting upper hypocotyl segments near cotyledon as explant provided the higest transformation efficiency, with regeneration rate of 25.59% when using NPTII as selectable marker and 22.19% for Bar. B. napus transformed with single gene showed higher transformation frequency than vectors with multiple genes,highlighting difficulty of multiple gene transformation. This work helped to further improve genetic transformation of B. napus by optimizing factors that impact transformation efficiency,and it would ultimately improve research in transgenic B. napus varieties with commercial potential.
基金supported by the National Natural Science Foundation of China(Grant Nos.11972247 and 12372080).
文摘Microcracks are common in compact bone,but their continued propagation can lead to macroscopic fractures.These microcracks cannot be visualized radiographically,necessitating alternative noninvasive methods to identify excessive microcracking and prevent fractures.In this study,terahertz time-domain spectroscopy(THz-TDS)was used to examine bone interiors near cracks resulting from loading in bovine tibia samples.Various loading configurations,such as impact,quasi-static loading,and fatigue loading,known to induce different types of micro-scale damage,were applied.The values of refractive index and absorption coefficient of the bone samples were then determined from the THz-TDS spectra acquired before loading and after fracture.The study revealed that different loading configurations led to varying terahertz optical coefficients associated with various types of bone fractures.Specifically,the refractive index notably increased under fatigue loading but remained relatively stable during quasi-static bending.The absorption coefficient of bone decreased only under fatigue loading.Furthermore,samples were subjected to axial and radial impacts without sustaining damage.Results indicated that in the undamaged state,the change in refractive index was smaller compared to after impact failure,while the change in absorption coefficient remained consistent after failure.Under radial impact loading,changes in refractive index and absorption coefficient were significantly more pronounced than under axial loading.Prior to loading,the measured value of refractive index was 2.72±0.11,and the absorption coefficient was 6.33±0.09 mm^(−1)at 0.5 THz.
基金the National Key Research and Development Program of China(Grant No.2018YFB0703500)the National Natural Science Foundation of China(Grant Nos.11827802,11772223,11772227,11890680,and 61727810)。
文摘With the application of strain engineering in microelectronics,complex stress states are introduced into advanced semiconductor devices.However,there is still a lack of effective metrology for the decoupling analysis of the complex stress states in semiconductor materials.This paper presents an investigation on the 2-axis stress component decoupling of{100}monocrystalline silicon(c-Si)by using oblique backscattering micro-Raman spectroscopy.A spectral-mechanical model was established,and two practicable methods for actual stress decoupling analyses were proposed.The verification experiments demonstrated the correctness and applicability of the methods proposed in this paper.
文摘Long terminal repeat (LTR) retrotransposons, one of the foremost types of transposons, continually change or modify gene function and reorganize the genome through bursts of dramatic proliferation. Many LTR-TEs preferen-tially insert within other LTR-TEs, but the cause and evolutionary significance of these nested LTR-TEs are not well under-stood. In this study, a total of 1.52 Gb of Brassica sequence containing 2020 bacterial artificial chromosomes (BACs) was scanned, and six bacterial artificial chromosome (BAC) clones with extremely nested LTR-TEs (LTR-TEs density: 7.24/kb) were selected for further analysis. The majority of the LTR-TEs in four of the six BACs were found to be derived from the rapid proliferation of retrotransposons originating within the BAC regions, with only a few LTR-TEs originating from the proliferation and insertion of retrotransposons from outside the BAC regions approximately 5-23 Mya. LTR-TEs also pref-erably inserted into TA-rich repeat regions. Gene prediction by Genescan identified 207 genes in the 0.84Mb of total BAC sequences. Only a few genes (3/207) could be matched to the Brassica expressed sequence tag (EST) database, indicating that most genes were inactive after retrotransposon insertion. Five of the six BACs were putatively centromeric. Hence, nested LTR-TEs in centromere regions are rapidly duplicated, repeatedly inserted, and act to suppress activity of genes and to reshuffle the structure of the centromeric sequences. Our results suggest that LTR-TEs burst and proliferate on a local scale to create nested LTR-TE regions, and that these nested LTR-TEs play a role in the formation of centromeres.
基金Project supported by the National Natural Science Foundation of China(Nos.11127202 and 11227202)
文摘Soft material is becoming increasingly important to many industries, which leads to the demand for a better understanding of its mechanical properties under large deformation. In this paper, a technique of integrating the digital moire method and embedded-grating approach is presented for investigating mechanical behaviors of a vulcanized silicone rubber in contact with a wedge-shaped indenter. Two distinct deformation sectors are observed from the experimental result. A simple way of computing strain is also presented by analysing grid deformation within the framework of geometrical nonlinearity. Three regions were observed from strain distribution along the horizontal direction: the contact region, the sink-in region and the far-field region. Moreover, the extent of the sticky region and that of the slippy region within the contact interface are distinguished, which can provide realistic data for theoretical modelling. Based on the finite deformation elasticity theory, the distribution of contact pressure and shear stress over the contact interface are derived for prediction of possible cracks.