Sulfur particles carried by high-speed flow impact pipelines,which may cause equipment malfunctions and even failure.This paper investigates the scouring effect of mist gas containing sulfur particles on elbows in hig...Sulfur particles carried by high-speed flow impact pipelines,which may cause equipment malfunctions and even failure.This paper investigates the scouring effect of mist gas containing sulfur particles on elbows in highly sour gas fields.The multiphase-flow hydrodynamic model of the 90elbow was established by using the computational fluid dynamics(CFD)method.The scouring effects of the gasliquid mist fluid with the water-liquid fraction of 20%and particles with the diameter of 0.01 e0.05mm on elbows were explored within the flow velocity range of 0e20 m/s.In addition,the influences of secondary collision,mean curvature radius to diameter(R/D)ratio,inertial force,drag force,and Stokes number on trajectories of sulfur particles were studied.Moreover,the influences of hydrodynamic parameters of multiphase flow on corrosion inhibitor film were analyzed with the wall shear stress as the reference value.Serious erosion mainly occurred in the extrados of elbow as well as the junction between downstream pipeline and the intrados of elbow,the maximum erosion area occurs at 61.9.When the incident position of the particle was far away from the top of the inlet plane,the probability of secondary collision became smaller.Furthermore,the erosion rate decreased with the rise in the R/D radio.The maximum erosion rate of elbow increased with the increase in the Stoke number.The maximum erosion rate reached 0.428 mm/a at 0.05mm particle diameter and 20 m/s fluid velocity.The wall shear stress increased with the increase in fluid velocity and mass flow rate of particle,the fitting function of the wall shear stress curve was the Fourier type.The results indicated that highvelocity particles had a serious erosion effect on elbows and affected the stability of the corrosion inhibitor film.The erosion effect could be retarded by controlling the velocity and diameter of particles.The results provided technical supports for the safe production in highly sour gas fields.展开更多
To explore the damage behavior of O-ring in acid environment,a high-temperature and high-pressure(HTHP)autoclave was used to simulate the service environment of O-ring,and then 168h corrosion test of hydrogenated nitr...To explore the damage behavior of O-ring in acid environment,a high-temperature and high-pressure(HTHP)autoclave was used to simulate the service environment of O-ring,and then 168h corrosion test of hydrogenated nitrile butadiene rubber(HNBR)and fluororubber(FM)O-rings were carried out.The corrosion damage behaviors of two kinds of rubber O-rings in the acidizing fluid were studied through determining their tensile strength,elongation at break,hardness,permanent compressive deformation,tensile fracture morphology and sealing property.The results showed that the crosssectional area and the compression permanent deformation increased,the tensile strength and hardness decreased when the HNBR and FM O-rings under the free state were subjected to acid corrosion.The elongation at break of HNBR decreased,and that of FM rubber increased greatly.Similar with free state,the HNBR and FM O-rings under sealed state also presented the same variation trend.The decrease in the reliability of the O-rings under the sealed state was less significant than that in the free state.In the test,tensile fractures were mostly brittle fractures,HNBR and FM O-rings had obvious corrosion damages such as deformation and swelling.The results could provide a technical basis for the selection of sealing materials,tool optimization design,and construction work in oil and gas fields.展开更多
Stainless steels have shown great potential in the application of offshore oil and gas industry.However,the internal surface of stainless steel pipeline may simultaneously suffer erosion from the fluid media inside th...Stainless steels have shown great potential in the application of offshore oil and gas industry.However,the internal surface of stainless steel pipeline may simultaneously suffer erosion from the fluid media inside the pipeline and the damage of hydrogen that is generated from the external activities such as cathodic protection.The synergistic effect of erosion and hydrogen on the properties of passive film on 2205 duplex stainless steel was studied for the first time in a loop system coupled with a hydrogen-charging cell.The components,protective performance and semiconductive structure as well as properties of the passive film under different conditions were investigated using in-situ electrochemical techniques,surface characterization and computational fluid dynamics simulation.The results show that the combination of erosion and hydrogen could greatly thin the passive film,furthermore,the Fe^(3+)/Fe^(2+)ratio and O_(2)^(-)/OH^(-)ratio in the passive film also decrease dramatically under such a condition.Therefore,the hydration degree of the passive film greatly increases,resulting in an increase in active sites and a decrease in the stability of the passive film.Erosion could destroy the passive film through the impact of sand particles and accelerate the mass transfer process of electrochemical reaction.While hydrogen can not only enhance the charge transfer process,but also make the passive film highly defective.Under the combination of erosion and hydrogen condition,erosion could enhance the hydrogen damage and simultaneously hydrogen could also enhance erosion.Therefore,the synergistic effect of erosion and hydrogen could dramatically change the passive film component,decrease the protective performance,and increase the susceptibility of pitting corrosion of 2205 stainless steel in Cl-containing environment.展开更多
基金The authors acknowledge the support from the National Natural Science Foundation Project of China(No.51374177)the Supporting Program of Youth Backbone Teachers of Southwest Petroleum University.
文摘Sulfur particles carried by high-speed flow impact pipelines,which may cause equipment malfunctions and even failure.This paper investigates the scouring effect of mist gas containing sulfur particles on elbows in highly sour gas fields.The multiphase-flow hydrodynamic model of the 90elbow was established by using the computational fluid dynamics(CFD)method.The scouring effects of the gasliquid mist fluid with the water-liquid fraction of 20%and particles with the diameter of 0.01 e0.05mm on elbows were explored within the flow velocity range of 0e20 m/s.In addition,the influences of secondary collision,mean curvature radius to diameter(R/D)ratio,inertial force,drag force,and Stokes number on trajectories of sulfur particles were studied.Moreover,the influences of hydrodynamic parameters of multiphase flow on corrosion inhibitor film were analyzed with the wall shear stress as the reference value.Serious erosion mainly occurred in the extrados of elbow as well as the junction between downstream pipeline and the intrados of elbow,the maximum erosion area occurs at 61.9.When the incident position of the particle was far away from the top of the inlet plane,the probability of secondary collision became smaller.Furthermore,the erosion rate decreased with the rise in the R/D radio.The maximum erosion rate of elbow increased with the increase in the Stoke number.The maximum erosion rate reached 0.428 mm/a at 0.05mm particle diameter and 20 m/s fluid velocity.The wall shear stress increased with the increase in fluid velocity and mass flow rate of particle,the fitting function of the wall shear stress curve was the Fourier type.The results indicated that highvelocity particles had a serious erosion effect on elbows and affected the stability of the corrosion inhibitor film.The erosion effect could be retarded by controlling the velocity and diameter of particles.The results provided technical supports for the safe production in highly sour gas fields.
基金Project supported by the National Natural Science Foundation of China“Study on the mechanism of force-chemical damage of screw sealing surface of H_(2)S/CO_(2)gas well completion string under static load,vibration and corrosion”(No.51774249)Sichuan Science and Technology Program(No.21JCQN0066).
文摘To explore the damage behavior of O-ring in acid environment,a high-temperature and high-pressure(HTHP)autoclave was used to simulate the service environment of O-ring,and then 168h corrosion test of hydrogenated nitrile butadiene rubber(HNBR)and fluororubber(FM)O-rings were carried out.The corrosion damage behaviors of two kinds of rubber O-rings in the acidizing fluid were studied through determining their tensile strength,elongation at break,hardness,permanent compressive deformation,tensile fracture morphology and sealing property.The results showed that the crosssectional area and the compression permanent deformation increased,the tensile strength and hardness decreased when the HNBR and FM O-rings under the free state were subjected to acid corrosion.The elongation at break of HNBR decreased,and that of FM rubber increased greatly.Similar with free state,the HNBR and FM O-rings under sealed state also presented the same variation trend.The decrease in the reliability of the O-rings under the sealed state was less significant than that in the free state.In the test,tensile fractures were mostly brittle fractures,HNBR and FM O-rings had obvious corrosion damages such as deformation and swelling.The results could provide a technical basis for the selection of sealing materials,tool optimization design,and construction work in oil and gas fields.
基金supported by the National Science Foundation of China(No.51601159)the“111 Project”(No.D18016)+1 种基金the Application and Fundamental Research of Sichuan Province(No.2017JY0171)the Scientific and Technological Innovation Team for the Safety of Petroleum Tubular Goods in Southwest Petroleum University(No.2018CXTD01)。
文摘Stainless steels have shown great potential in the application of offshore oil and gas industry.However,the internal surface of stainless steel pipeline may simultaneously suffer erosion from the fluid media inside the pipeline and the damage of hydrogen that is generated from the external activities such as cathodic protection.The synergistic effect of erosion and hydrogen on the properties of passive film on 2205 duplex stainless steel was studied for the first time in a loop system coupled with a hydrogen-charging cell.The components,protective performance and semiconductive structure as well as properties of the passive film under different conditions were investigated using in-situ electrochemical techniques,surface characterization and computational fluid dynamics simulation.The results show that the combination of erosion and hydrogen could greatly thin the passive film,furthermore,the Fe^(3+)/Fe^(2+)ratio and O_(2)^(-)/OH^(-)ratio in the passive film also decrease dramatically under such a condition.Therefore,the hydration degree of the passive film greatly increases,resulting in an increase in active sites and a decrease in the stability of the passive film.Erosion could destroy the passive film through the impact of sand particles and accelerate the mass transfer process of electrochemical reaction.While hydrogen can not only enhance the charge transfer process,but also make the passive film highly defective.Under the combination of erosion and hydrogen condition,erosion could enhance the hydrogen damage and simultaneously hydrogen could also enhance erosion.Therefore,the synergistic effect of erosion and hydrogen could dramatically change the passive film component,decrease the protective performance,and increase the susceptibility of pitting corrosion of 2205 stainless steel in Cl-containing environment.